63 research outputs found

    Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic cancer is characterized by nearly universal activating mutations in KRAS. Among other somatic mutations, TP53 is mutated in more than 75% of human pancreatic tumors. Genetically engineered mice have proven instrumental in studies of the contribution of individual genes to carcinogenesis. Oncogenic Kras mutations occur early during pancreatic carcinogenesis and are considered an initiating event. In contrast, mutations in p53 occur later during tumor progression. In our model, we recapitulated the order of mutations of the human disease, with p53 mutation following expression of oncogenic Kras. Further, using an inducible and reversible expression allele for mutant p53, we inactivated its expression at different stages of carcinogenesis. Notably, the function of mutant p53 changes at different stages of carcinogenesis. Our work establishes a requirement for mutant p53 for the formation and maintenance of pancreatic cancer precursor lesions. In tumors, mutant p53 becomes dispensable for growth. However, it maintains the altered metabolism that characterizes pancreatic cancer and mediates its malignant potential. Further, mutant p53 promotes epithelial-mesenchymal transition (EMT) and cancer cell invasion. This work generates new mouse models that mimic human pancreatic cancer and expands our understanding of the role of p53 mutation, common in the majority of human malignancies

    Two distinct signalling cascades target the NF-κB regulatory factor c-IAP1 for degradation

    Get PDF
    c-IAP1 (cellular inhibitor of apoptosis 1) has recently emerged as a negative regulator of the non-canonical NF-κB (nuclear factor κB) signalling cascade. Whereas synthetic IAP inhibitors have been shown to trigger the autoubiquitination and degradation of c-IAP1, less is known about the physiological mechanisms by which c-IAP1 stability is regulated. In the present paper, we describe two distinct cellular processes that lead to the targeted loss of c-IAP1. Recruitment of a TRAF2 (tumour necrosis factor receptor-associated factor 2)–c-IAP1 complex to the cytoplasmic domain of the Hodgkin's/anaplastic large-cell lymphoma-associated receptor, CD30, leads to the targeting and degradation of the TRAF2–c-IAP1 heterodimer through a mechanism requiring the RING (really interesting new gene) domain of TRAF2, but not c-IAP1. In contrast, the induced autoubiquitination of c-IAP1 by IAP antagonists causes the selective loss of c-IAP1, but not TRAF2, thereby releasing TRAF2. Thus c-IAP1 can be targeted for degradation by two distinct processes, revealing the critical importance of this molecule as a regulator of numerous intracellular signalling cascades

    DW-MRI as a Biomarker to Compare Therapeutic Outcomes in Radiotherapy Regimens Incorporating Temozolomide or Gemcitabine in Glioblastoma

    Get PDF
    The effectiveness of the radiosensitizer gemcitabine (GEM) was evaluated in a mouse glioma along with the imaging biomarker diffusion-weighted magnetic resonance imaging (DW-MRI) for early detection of treatment effects. A genetically engineered murine GBM model [Ink4a-Arf−/− PtenloxP/loxP/Ntv-a RCAS/PDGF(+)/Cre(+)] was treated with gemcitabine (GEM), temozolomide (TMZ) +/− ionizing radiation (IR). Therapeutic efficacy was quantified by contrast-enhanced MRI and DW-MRI for growth rate and tumor cellularity, respectively. Mice treated with GEM, TMZ and radiation showed a significant reduction in growth rates as early as three days post-treatment initiation. Both combination treatments (GEM/IR and TMZ/IR) resulted in improved survival over single therapies. Tumor diffusion values increased prior to detectable changes in tumor volume growth rates following administration of therapies. Concomitant GEM/IR and TMZ/IR was active and well tolerated in this GBM model and similarly prolonged median survival of tumor bearing mice. DW-MRI provided early changes to radiosensitization treatment warranting evaluation of this imaging biomarker in clinical trials

    Multimodality Imaging of Tumor and Bone Response in a Mouse Model of Bony Metastasis

    Get PDF
    AbstractCancer drug development generally performs in vivo evaluation of treatment effects that have traditionally relied on detection of morphologic changes. The emergence of new targeted therapies, which may not result in gross morphologic changes, has spurred investigation into more specific imaging methods to quantify response, such as targeted fluorescent probes and bioluminescent cells. The present study investigated tissue response to docetaxel or zoledronic acid (ZA) in a mouse model of bony metastasis. Intratibial implantations of breast cancer cells (MDA-MB-231) were monitored throughout this study using several modalities: molecular resonance imaging (MRI) tumor volume and apparent diffusion coefficient (ADC), micro-computed tomography (µCT) bone volume, bioluminescence imaging (BLI) reporting cancer cell apoptosis, and fluorescence using Osteosense 800 and CatK 680-FAST. Docetaxel treatment resulted in tumor cell kill reflected by ADC and BLI increases and tumor volume reduction, with delayed bone recovery seen in µCT prefaced by increased osteoblastic activity (Osteosense 800). In contrast, the ZA treatment group produced similar values in MRI, BLI, and Osteosense 800 fluorescence imaging readouts when compared to controls. However, µCT bone volume increased significantly by the first week post-treatment and the CatK 680-FAST signal was slightly diminished by 4 weeks following ZA treatment. Multimodality imaging provides a more comprehensive tool for new drug evaluation and efficacy screening through identification of morphology as well as function and apoptotic signaling

    Noninvasive Monitoring of Pharmacodynamics and Kinetics of a Death Receptor 5 Antibody and Its Enhanced Apoptosis Induction in Sequential Application with Doxorubicin

    No full text
    Induction of apoptosis plays a crucial role in the response of tumors to treatment. Thus, we investigated the pharmacodynamics and tumor saturation kinetics of a death receptor 5 antibody (anti-DR5) when combined with chemotherapeutics. For our investigations, we applied an imaging method that allows monitoring of apoptosis noninvasively in living mice. A stably transfected apoptosis reporter based on split luciferase technology facilitates to screen various chemotherapeutics and anti-DR5 on their ability to induce apoptosis in glioblastoma cells in vitro as well as in vivo. We found that doxorubicin (DOX) treatment in vitro led to significant apoptosis induction within 48 hours and to a 2.3-fold increased anti-DR5 binding to the cell surface. In contrast, cisplatin and 5-fluorouracil (5-FU) treatment altered anti-DR5 binding only marginally. Induction of apoptosis by treatment with anti-DR5 was dose- and time-dependent (both in vitro and in vivo). Simultaneous visualization of fluorescence-labeled anti-DR5 in tumor tissue and apoptosis revealed maximal apoptosis induction immediately after the compound had reached tumor site. Regarding combination therapy of anti-DR5 and DOX, we found that the sequential application of DOX before anti-DR5 resulted in synergistically enhanced apoptosis reporter activity. In striking contrast, anti-DR5 given before DOX did not lead to increased apoptosis induction. We suggest that DOX-induced recruitment of DR5 to the cell surface impacts the enhanced apoptotic effect that can be longitudinally monitored by apoptosis imaging. This study demonstrates that the combination of apoptosis and fluorescence imaging is an excellent method for optimizing dosing and treatment schedules in preclinical cancer models

    Semiautomated Workflow for Clinically Streamlined Glioma Parametric Response Mapping

    No full text
    Management of glioblastoma multiforme remains a challenging problem despite recent advances in targeted therapies. Timely assessment of therapeutic agents is hindered by the lack of standard quantitative imaging protocols for determining targeted response. Clinical response assessment for brain tumors is determined by volumetric changes assessed at 10 weeks post-treatment initiation. Further, current clinical criteria fail to use advanced quantitative imaging approaches, such as diffusion and perfusion magnetic resonance imaging. Development of the parametric response mapping (PRM) applied to diffusion-weighted magnetic resonance imaging has provided a sensitive and early biomarker of successful cytotoxic therapy in brain tumors while maintaining a spatial context within the tumor. Although PRM provides an earlier readout than volumetry and sometimes greater sensitivity compared with traditional whole-tumor diffusion statistics, it is not routinely used for patient management; an automated and standardized software for performing the analysis and for the generation of a clinical report document is required for this. We present a semiautomated and seamless workflow for image coregistration, segmentation, and PRM classification of glioblastoma multiforme diffusion-weighted magnetic resonance imaging scans. The software solution can be integrated using local hardware or performed remotely in the cloud while providing connectivity to existing picture archive and communication systems. This is an important step toward implementing PRM analysis of solid tumors in routine clinical practice

    Metastatic pancreatic cancer is dependent on oncogenic Kras in mice.

    Get PDF
    Pancreatic cancer is one of the deadliest human malignancies, and its prognosis has not improved over the past 40 years. Mouse models that spontaneously develop pancreatic adenocarcinoma and mimic the progression of the human disease are emerging as a new tool to investigate the basic biology of this disease and identify potential therapeutic targets. Here, we describe a new model of metastatic pancreatic adenocarcinoma based on pancreas-specific, inducible and reversible expression of an oncogenic form of Kras, together with pancreas-specific expression of a mutant form of the tumor suppressor p53. Using high-resolution magnetic resonance imaging to follow individual animals in longitudinal studies, we show that both primary and metastatic lesions depend on continuous Kras activity for their maintenance. However, re-activation of Kras* following prolonged inactivation leads to rapid tumor relapse, raising the concern that Kras*-resistance might eventually be acquired. Thus, our data identifies Kras* as a key oncogene in pancreatic cancer maintenance, but raises the possibility of acquired resistance should Kras inhibitors become available for use in pancreatic cancer

    Diffusion-weighted MRI as a biomarker of tumor radiation treatment response heterogeneity: A comparative study of whole-volume histogram analysis versus voxel-based functional diffusion map analysis

    Get PDF
    RATIONALE: Treatment of glioblastoma (GBM) remains challenging due in part to its histologic intratumoral heterogeneity that contributes to its overall poor treatment response. Our goal was to evaluate a voxel-based biomarker, the functional diffusion map (fDM), as an imaging biomarker to detect heterogeneity of tumor response in a radiation dose escalation protocol using a genetically engineered murine GBM model. EXPERIMENTAL DESIGN: Twenty-four genetically engineered murine GBM models [Ink4a-Arf-/-/Ptenloxp/loxp/Ntv-a RCAS/PDGF(+)/Cre(+)] were randomized in four treatment groups (n = 6 per group) consisting of daily doses of 0, 1, 2, and 4 Gy delivered for 5 days. Contrast-enhanced T1-weighted and diffusion-weighted magnetic resonance imaging (MRI) scans were acquired for tumor delineation and quantification of apparent diffusion coefficient (ADC) maps, respectively. MRI experiments were performed daily for a week and every 2 days thereafter. For each animal, the area under the curve (AUC) of the percentage change of the ADC (AUCADC) and that of the increase in fDM values (AUCfDM+) were determined within the first 5 days following therapy initiation. RESULTS: Animal survival increased with increasing radiation dose. Treatment induced a dose-dependent increase in tumor ADC values. The strongest correlation between survival and ADC measurements was observed using the AUCfDM+ metric (R2 = 0.88). CONCLUSION: This study showed that the efficacy of a voxel-based imaging biomarker (fDM) was able to detect spatially varying changes in tumors, which were determined to be a more sensitive predictor of overall response versus whole-volume tumor measurements (AUCADC). Finally, fDM provided for visualization of treatment-associated spatial heterogeneity within the tumor. © 2013 Neoplasia Press, Inc. All rights reserved

    Apoptosis-Inducing Factor Is a Target for Ubiquitination through Interaction with XIAP▿ †

    No full text
    X-linked inhibitor of apoptosis (XIAP) is an inhibitor of apoptotic cell death that protects cells by caspase-dependent and independent mechanisms. In a screen for molecules that participate with XIAP in regulating cellular activities, we identified apoptosis-inducing factor (AIF) as an XIAP binding protein. Baculoviral IAP repeat 2 of XIAP is sufficient for the XIAP/AIF interaction, which is disrupted by Smac/DIABLO. In healthy cells, mature human AIF lacks only the first 54 amino acids, differing significantly from the apoptotic form, which lacks the first 102 amino-terminal residues. Fluorescence complementation and immunoprecipitation experiments revealed that XIAP interacts with both AIF forms. AIF was found to be a target of XIAP-mediated ubiquitination under both normal and apoptotic conditions, and an E3 ubiquitin ligase-deficient XIAP variant displayed a more robust interaction with AIF. Expression of either XIAP or AIF attenuated both basal and antimycin A-stimulated levels of reactive oxygen species (ROS), and when XIAP and AIF were expressed in combination, a cumulative decrease in ROS was observed. These results identify AIF as a new XIAP binding partner and indicate a role for XIAP in regulating cellular ROS
    corecore