788 research outputs found

    Cancellation of IR Divergences in 3d Abelian Gauge Theories

    Get PDF
    Three dimensional abelian gauge theories classically in a Coulomb phase are affected by IR divergences even when the matter fields are all massive. Using generalizations of Ward-Takahashi identities, we show that correlation functions of gauge-invariant operators are IR finite to all orders in perturbation theory. Gauge invariance is sufficient but not necessary for IR finiteness. In particular we show that specific gauge-variant correlators, including the two-point function of matter fields, are also IR finite to all orders in perturbation theory. Possible applications of these results are briefly discussed

    Neuroprotection in Parkinson’s disease : a realistic goal?

    Get PDF
    The current issue of CNS Neuroscience & Therapeutics contains an interesting review by Kinecses and Vecsei on the progress in our knowledge related to the pathophysiological mechanisms of Parkinson’s disease (PD) and on the development of putative neuroprotective molecules. Since the seminal discovery by Oleh Hornykiewicz that degeneration of DA neurons within the substantia nigra pars compacta (SNc) and the consequential dopamine depletion in the striatum was the cause of neurological symptoms in PD, thousands of reviews have been written on the subject, some of them possibly superfluous. Nevertheless, we found this last work enjoyable in terms of readability and in the way the authors decided to tackle such a difficult enterprise. This brief literature review is obviously far from comprehensive or exhaustive, as it would be impossible to summarize 50 years of fruitful research in the PD field in a few pages. The main contribution of this review is the general overview of the pathomechanism field and a survey of the literature that it provides on the hot topic of neuroprotection. Indeed, molecules able to slow and halt dopaminergic neuronal loss represent the highest ambition of PD research, drug companies and not least, patients. In recent years, research has advanced to the point that halting the progression of PD, restoring lost function, and even preventing the disease might be considered realistic goals. Nevertheless the ultimate goal of preventing PD may take years to achieve, and no strong experimental confirmation hitherto is available for any of the compounds described by Kinecses and Vecsei and others that the authors have not cited.peer-reviewe

    Enhancing Coexistence in the Unlicensed Band with Massive MIMO

    Full text link
    We consider cellular base stations (BSs) equipped with a large number of antennas and operating in the unlicensed band. We denote such system as massive MIMO unlicensed (mMIMO-U). We design the key procedures required to guarantee coexistence between a cellular BS and nearby Wi-Fi devices. These include: neighboring Wi-Fi channel covariance estimation, allocation of spatial degrees of freedom for interference suppression, and enhanced channel sensing and data transmission phases. We evaluate the performance of the so-designed mMIMO-U, showing that it allows simultaneous cellular and Wi-Fi transmissions by keeping their mutual interference below the regulatory threshold. The same is not true for conventional listen-before-talk (LBT) operations. As a result, mMIMO-U boosts the aggregate cellular-plus-Wi-Fi data rate in the unlicensed band with respect to conventional LBT, exhibiting increasing gains as the number of BS antennas grows.Comment: To appear in Proc. IEEE ICC 201

    Indoor Massive MIMO Deployments for Uniformly High Wireless Capacity

    Full text link
    Providing consistently high wireless capacity is becoming increasingly important to support the applications required by future digital enterprises. In this paper, we propose Eigen-direction-aware ZF (EDA-ZF) with partial coordination among base stations (BSs) and distributed interference suppression as a practical approach to achieve this objective. We compare our solution with Zero Forcing (ZF), entailing neither BS coordination or inter-cell interference mitigation, and Network MIMO (NeMIMO), where full BS coordination enables centralized inter-cell interference management. We also evaluate the performance of said schemes for three sub-6 GHz deployments with varying BS densities -- sparse, intermediate, and dense -- all with fixed total number of antennas and radiated power. Extensive simulations show that: (i) indoor massive MIMO implementing the proposed EDA-ZF provides uniformly good rates for all users; (ii) indoor network densification is detrimental unless full coordination is implemented; (iii) deploying NeMIMO pays off under strong outdoor interference, especially for cell-edge users

    Surface Roughness Characterisation and Analysis of the Electron Beam Melting (EBM) Process

    Get PDF
    Electron Beam Melting (EBM) is a metal powder bed fusion (PBF) process in which the heat source is an electron beam. Differently from other metal PBF processes, today, EBM is used for mass production. As-built EBM parts are clearly recognisable by their surface roughness, which is, in some cases, one of the major limitations of the EBM process. The aim of this work is to investigate the effects of the orientation and the slope of the EBM surfaces on the surface roughness. Additionally, the machine repeatability is studied by measuring the roughness of surfaces built at different positions on the start plate. To these aims, a specific artefact was designed. Replicas of the artefact were produced using an Arcam A2X machine and Ti6Al4V powder. Descriptive and inferential statistical methods were applied to investigate whether the surface morphology was affected by process factors. The results show significant differences between the upward and downward surfaces. The upward surfaces appear less rough than the downward ones, for which a lower standard deviation was obtained in the results. The roughness of the upward surfaces is linearly influenced by the sloping angle, while the heat distribution on the cross-section was found to be a key factor in explaining the roughness of the downward surfaces

    Uplink Sounding Reference Signal Coordination to Combat Pilot Contamination in 5G Massive MIMO

    Full text link
    To guarantee the success of massive multiple-input multiple-output (MIMO), one of the main challenges to solve is the efficient management of pilot contamination. Allocation of fully orthogonal pilot sequences across the network would provide a solution to the problem, but the associated overhead would make this approach infeasible in practical systems. Ongoing fifth-generation (5G) standardisation activities are debating the amount of resources to be dedicated to the transmission of pilot sequences, focussing on uplink sounding reference signals (UL SRSs) design. In this paper, we extensively evaluate the performance of various UL SRS allocation strategies in practical deployments, shedding light on their strengths and weaknesses. Furthermore, we introduce a novel UL SRS fractional reuse (FR) scheme, denoted neighbour-aware FR (FR-NA). The proposed FR-NA generalizes the fixed reuse paradigm, and entails a tradeoff between i) aggressively sharing some UL SRS resources, and ii) protecting other UL SRS resources with the aim of relieving neighbouring BSs from pilot contamination. Said features result in a cell throughput improvement over both fixed reuse and state-of-the-art FR based on a cell-centric perspective

    A role for Separase in telomere protection

    Get PDF
    Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity and are assembled independently of the sequence. Fly telomeres are protected by the terminin complex that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. We show that mutations in the Drosophila Separase encoding gene Sse lead not only to endoreduplication but also telomeric fusions (TFs), suggesting a role for Sse in telomere capping. We demonstrate that Separase binds terminin proteins and HP1, and that it is enriched at telomeres. Furthermore, we show that loss of Sse strongly reduces HP1 levels, and that HP1 overexpression in Sse mutants suppresses TFs, suggesting that TFs are caused by a HP1 diminution. Finally, we find that siRNA-induced depletion of ESPL1, the Sse human orthologue, causes telomere dysfunction and HP1 level reduction in primary fibroblasts, highlighting a conserved role of Separase in telomere protection
    • …
    corecore