1,110 research outputs found

    Path-integral calculation of the third virial coefficient of quantum gases at low temperatures

    Full text link
    We derive path-integral expressions for the second and third virial coefficients of monatomic quantum gases. Unlike previous work that considered only Boltzmann statistics, we include exchange effects (Bose-Einstein or Fermi-Dirac statistics). We use state-of-the-art pair and three-body potentials to calculate the third virial coefficient of 3He and 4He in the temperature range 2.6-24.5561 K. We obtain uncertainties smaller than those of the limited experimental data. Inclusion of exchange effects is necessary to obtain accurate results below about 7 K.Comment: The following article has been accepted by The Journal of Chemical Physics. After it is published, it will be found at http://jcp.aip.org/ Version 2 includes the corrections detailed in the Erratu

    TALON - The Telescope Alert Operation Network System: Intelligent Linking of Distributed Autonomous Robotic Telescopes

    Full text link
    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.Comment: Presentation at SPIE 2004, Glasgow, Scotland (UK

    SkyDOT (Sky Database for Objects in the Time Domain): A Virtual Observatory for Variability Studies at LANL

    Full text link
    The mining of Virtual Observatories (VOs) is becoming a powerful new method for discovery in astronomy. Here we report on the development of SkyDOT (Sky Database for Objects in the Time domain), a new Virtual Observatory, which is dedicated to the study of sky variability. The site will confederate a number of massive variability surveys and enable exploration of the time domain in astronomy. We discuss the architecture of the database and the functionality of the user interface. An important aspect of SkyDOT is that it is continuously updated in near real time so that users can access new observations in a timely manner. The site will also utilize high level machine learning tools that will allow sophisticated mining of the archive. Another key feature is the real time data stream provided by RAPTOR (RAPid Telescopes for Optical Response), a new sky monitoring experiment under construction at Los Alamos National Laboratory (LANL).Comment: to appear in SPIE proceedings vol. 4846, 11 pages, 5 figure

    Thermodynamically self-consistent liquid state theories for systems with bounded potentials

    Full text link
    The mean spherical approximation (MSA) can be solved semi-analytically for the Gaussian core model (GCM) and yields - rather surprisingly - exactly the same expressions for the energy and the virial equations. Taking advantage of this semi-analytical framework, we apply the concept of the self-consistent Ornstein-Zernike approximation (SCOZA) to the GCM: a state-dependent function K is introduced in the MSA closure relation which is determined to enforce thermodynamic consistency between the compressibility route and either the virial or energy route. Utilizing standard thermodynamic relations this leads to two different differential equations for the function K that have to be solved numerically. Generalizing our concept we propose an integro-differential-equation based formulation of the SCOZA which, although requiring a fully numerical solution, has the advantage that it is no longer restricted to the availability of an analytic solution for a particular system. Rather it can be used for an arbitrary potential and even in combination with other closure relations, such as a modification of the hypernetted chain approximation.Comment: 11 pages, 11 figures, submitted to J. Chem. Phy

    Relativistic Particle-In-Cell Simulation Studies of Prompt and Early Afterglows from GRBs

    Full text link
    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks e.g. gamma-ray bursts (GRBs) active galactic nuclei (AGNs) and microquasars commonly exhibit power-law emission spectra. Recent PIC simulations of relativistic electron-ion (or electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In collisionless relativistic shocks particle (electron, positron and ion) acceleration is due to plasma waves and their associated instabilities (e.g. the Weibel (filamentation) instability) created in the shock region. The simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform small-scale magnetic fields. These fields contribute to the electron's transverse deflection behind the jet head. The resulting ``jitter'' radiation from deflected electrons has different properties compared to synchrotron radiation which assumes a uniform magnetic field. Jitter radiation may be important for understanding the complex time evolution and/or spectra in gamma-ray bursts, relativistic jets in general and supernova remnants.Comment: 19 pages,7 figures, contributed talk at Seventh European Workshop on Collisionless Shocks, Paris, 7- 9 November 2007. High resolution version can be obtained at http://gammaray.nsstc.nasa.gov/~nishikawa/shockws07.pd

    Efficient algorithms for rigid body integration using optimized splitting methods and exact free rotational motion

    Full text link
    Hamiltonian splitting methods are an established technique to derive stable and accurate integration schemes in molecular dynamics, in which additional accuracy can be gained using force gradients. For rigid bodies, a tradition exists in the literature to further split up the kinetic part of the Hamiltonian, which lowers the accuracy. The goal of this note is to comment on the best combination of optimized splitting and gradient methods that avoids splitting the kinetic energy. These schemes are generally applicable, but the optimal scheme depends on the desired level of accuracy. For simulations of liquid water it is found that the velocity Verlet scheme is only optimal for crude simulations with accuracies larger than 1.5%, while surprisingly a modified Verlet scheme (HOA) is optimal up to accuracies of 0.4% and a fourth order gradient scheme (GIER4) is optimal for even higher accuracies.Comment: 2 pages, 1 figure. Added clarifying comments. Accepted for publication in the Journal of Chemical Physic

    The hidden X-ray breaks in afterglow light curves

    Get PDF
    Gamma-Ray Burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences for the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as standard candles. Here we address the issue of X-ray breaks which are possibly 'hidden' and hence the light curves are misinterpreted as being single power-laws. We show how a number of precedents, including GRB 990510 & GRB 060206, exist for such hidden breaks and how, even with the well sampled light curves of the Swift era, these breaks may be left misidentified. We do so by synthesising X-ray light curves and finding general trends via Monte Carlo analysis. Furthermore, in light of these simulations, we discuss how to best identify achromatic breaks in afterglow light curves via multi-wavelength analysis.Comment: 4 pages, contributed talk, submitted to the proceedings of Gamma Ray Bursts 2007, Santa Fe, New Mexico, November 5-9 200

    An Efficient Pseudospectral Method for the Computation of the Self-force on a Charged Particle: Circular Geodesics around a Schwarzschild Black Hole

    Full text link
    The description of the inspiral of a stellar-mass compact object into a massive black hole sitting at a galactic centre is a problem of major relevance for the future space-based gravitational-wave observatory LISA (Laser Interferometer Space Antenna), as the signals from these systems will be buried in the data stream and accurate gravitational-wave templates will be needed to extract them. The main difficulty in describing these systems lies in the estimation of the gravitational effects of the stellar-mass compact object on his own trajectory around the massive black hole, which can be modeled as the action of a local force, the self-force. In this paper, we present a new time-domain numerical method for the computation of the self-force in a simplified model consisting of a charged scalar particle orbiting a nonrotating black hole. We use a multi-domain framework in such a way that the particle is located at the interface between two domains so that the presence of the particle and its physical effects appear only through appropriate boundary conditions. In this way we eliminate completely the presence of a small length scale associated with the need of resolving the particle. This technique also avoids the problems associated with the impact of a low differentiability of the solution in the accuracy of the numerical computations. The spatial discretization of the field equations is done by using the pseudospectral collocation method and the time evolution, based on the method of lines, uses a Runge-Kutta solver. We show how this special framework can provide very efficient and accurate computations in the time domain, which makes the technique amenable for the intensive computations required in the astrophysically-relevant scenarios for LISA.Comment: 15 pages, 9 figures, Revtex 4. Minor changes to match published versio

    Scalable design of tailored soft pulses for coherent control

    Full text link
    We present a scalable scheme to design optimized soft pulses and pulse sequences for coherent control of interacting quantum many-body systems. The scheme is based on the cluster expansion and the time dependent perturbation theory implemented numerically. This approach offers a dramatic advantage in numerical efficiency, and it is also more convenient than the commonly used Magnus expansion, especially when dealing with higher order terms. We illustrate the scheme by designing 2nd-order pi-pulses and a 6th-order 8-pulse refocusing sequence for a chain of qubits with nearest-neighbor couplings. We also discuss the performance of soft-pulse refocusing sequences in suppressing decoherence due to low-frequency environment.Comment: 4 pages, 2 tables. (modified first table, references added, minor text changes

    Characterization of macroinvertebrate communities in the hyporheic zone of river ecosystems reflects the pump-sampling technique used

    Get PDF
    The hyporheic zone of river ecosystems provides a habitat for a diverse macroinvertebrate community that makes a vital contribution to ecosystem functioning and biodiversity. However, effective methods for sampling this community have proved difficult to establish, due to the inaccessibility of subsurface sediments. The aim of this study was to compare the two most common semi-quantitative macroinvertebrate pump-sampling techniques: BouRouch and vacuum-pump sampling. We used both techniques to collect replicate samples in three contrasting temperate-zone streams, in each of two biogeographical regions (Atlantic region, central England, UK; Continental region, southeast France). Results were typically consistent across streams in both regions: Bou-Rouch samples provided significantly higher estimates of taxa richness, macroinvertebrate abundance, and the abundance of all UK and eight of 10 French common taxa. Seven and nine taxa which were rare in Bou-Rouch samples were absent from vacuum-pump samples in the UK and France, respectively; no taxon was repeatedly sampled exclusively by the vacuum pump. Rarefaction curves (rescaled to the number of incidences) and non-parametric richness estimators indicated no significant difference in richness between techniques, highlighting the capture of more individuals as crucial to Bou-Rouch sampling performance. Compared to assemblages in replicate vacuum-pump samples, multivariate analyses indicated greater distinction among Bou-Rouch assemblages from different streams, as well as significantly greater consistency in assemblage composition among replicate Bou-Rouch samples collected in one stream. We recommend Bou-Rouch sampling for most study types, including rapid biomonitoring surveys and studies requiring acquisition of comprehensive tax on lists that include rare taxa. Despite collecting fewer macroinvertebrates, vacuum-pump sampling remains an important option for inexpensive and rapid sample collection
    corecore