611 research outputs found

    TRANSMIT: Training Research and Applications Network to Support the Mitigation of Ionospheric Threats

    Get PDF
    TRANSMIT is an initiative funded by the European Commission through a Marie Curie Initial Training Network (ITN). Main aim of such networks is to improve the career perspectives of researchers who are in the first five years of their research career in both public and private sectors. In particular TRANSMIT will provide a coordinated program of academic and industrial training, focused on atmospheric phenomena that can significantly impair a wide range of systems and applications that are at the core of several activities embedded in our daily life. TRANSMIT deals with the harmful effects of the ionosphere on these systems, which will become increasingly significant as we approach the next solar maximum, predicted for 2013. Main aim of the project is to develop real time integrated state of the art tools to mitigate ionospheric threats to Global Navigation Satellite Systems (GNSS) and several related applications, such as civil aviation, marine navigation and land transportation. The project will provide Europe with the next generation of researchers in this field, equipping them with skills developed through a comprehensive and coordinated training program. Theirs research projects will develop real time integrated state of the art tools to mitigate these ionospheric threats to GNSS and several applications that rely on these systems. The main threat to the reliable and safe operation of GNSS is the variable propagation conditions encountered by GNSS signals as they pass through the ionosphere. At a COST 296 MIERS (Mitigation of Ionospheric Effects on Radio Systems) workshop held at the University of Nottingham in 2008, the establishment of a sophisticated Ionospheric Perturbation Detection and Monitoring (IPDM) network (http://ipdm.nottingham.ac.uk/) was proposed by European experts and supported by the European Space Agency (ESA) as the way forward to deliver the state of the art to protect the range of essential systems vulnerable to these ionospheric threats. Through a set of carefully designed research work packages TRANSMIT will be the enabler of the IPDM network. The goal of TRANSMIT is therefore to provide a concerted training programme including taught courses, research training projects, secondments at the leading European institutions, and a set of network wide events, with summer schools, workshops and a conference, which will arm the researchers of tomorrow with the necessary skills and knowledge to set up and run the proposed service. TRANSMIT will count on an exceptional set of partners, encompassing both academia and end users, including the aerospace and satellite communications sectors, as well as GNSS system designers and service providers, major user operators and receiver manufacturers. TRANSMIT's objectives are: A. Develop new techniques to detect and monitor ionospheric threats, with the introduction of new prediction and forecasting models, mitigation tools and improved system design; B. Advance the physical modeling of the underlying processes associated with the ionospheric plasma environment and the knowledge of its influences on human activity; C. Establish a prototype of a real time system to monitor the ionosphere, capable of providing useful assistance to users, which exploits all available resources and adds value for European services and products; D. Incorporate solutions to this system that respond to all end user needs and that are applicable in all geographical regions of European interest (polar, high and mid-latitudes, equatorial region). TRANSMIT will pave the way to establish in Europe a system capable of mitigating ionospheric threats on GNSS signals in real tim

    The role of the Maternity Liaison Officer in provision of primary health care: A values-based service model

    Full text link
    Background: A policy directive of the New South Wales government focused on ensuring that all ethnic groups within the community have appropriate and equitable access to services led to the introduction of the maternity liaison officer (MLO) program in the late 1990s. The role of the MLO is to work alongside health professionals to provide education, social support and counselling to pregnant refugee and migrant women of culturally and linguistically diverse backgrounds (CALD). Methods: We reviewed reports and policy documents from 2008 to examine the attributes of this hospital-based service model and share insights into how the MLOs deliver care to meet the needs of mothers and babies. Findings: Maternity liaison officers have readily assumed the responsibility of maintaining current knowledge and building competency in improving the health and wellbeing of refugee and migrant women and newborns. They act as important bridge between women and the health system enabling vulnerable women to competently navigate their maternity journey, gynaecological care and the care of newborn infants in a culturally sensitive and appropriate manner. Discussion and conclusion: This service model offers an acceptable way to support the delivery of maternity care to women and include those from refugee and CALD- backgrounds. Investment in the rigorous evaluation of this service is needed to provide strong evidence to optimise service delivery and guide future decision making

    TRANSMIT: Training Research and Applications Network to Support the Mitigation of Ionospheric Threats

    Get PDF
    TRANSMIT is an initiative funded by the European Commission through a Marie Curie Initial Training Network (ITN). Main aim of such networks is to improve the career perspectives of researchers who are in the first five years of their research career in both public and private sectors. In particular TRANSMIT will provide a coordinated program of academic and industrial training, focused on atmospheric phenomena that can significantly impair a wide range of systems and applications that are at the core of several activities embedded in our daily life. TRANSMIT deals with the harmful effects of the ionosphere on these systems, which will become increasingly significant as we approach the next solar maximum, predicted for 2013. Main aim of the project is to develop real time integrated state of the art tools to mitigate ionospheric threats to Global Navigation Satellite Systems (GNSS) and several related applications, such as civil aviation, marine navigation and land transportation. The project will provide Europe with the next generation of researchers in this field, equipping them with skills developed through a comprehensive and coordinated training program. Theirs research projects will develop real time integrated state of the art tools to mitigate these ionospheric threats to GNSS and several applications that rely on these systems. The main threat to the reliable and safe operation of GNSS is the variable propagation conditions encountered by GNSS signals as they pass through the ionosphere. At a COST 296 MIERS (Mitigation of Ionospheric Effects on Radio Systems) workshop held at the University of Nottingham in 2008, the establishment of a sophisticated Ionospheric Perturbation Detection and Monitoring (IPDM) network (http://ipdm.nottingham.ac.uk/) was proposed by European experts and supported by the European Space Agency (ESA) as the way forward to deliver the state of the art to protect the range of essential systems vulnerable to these ionospheric threats. Through a set of carefully designed research work packages TRANSMIT will be the enabler of the IPDM network. The goal of TRANSMIT is therefore to provide a concerted training programme including taught courses, research training projects, secondments at the leading European institutions, and a set of network wide events, with summer schools, workshops and a conference, which will arm the researchers of tomorrow with the necessary skills and knowledge to set up and run the proposed service. TRANSMIT will count on an exceptional set of partners, encompassing both academia and end users, including the aerospace and satellite communications sectors, as well as GNSS system designers and service providers, major user operators and receiver manufacturers. TRANSMIT’s objectives are: A. Develop new techniques to detect and monitor ionospheric threats, with the introduction of new prediction and forecasting models, mitigation tools and improved system design; B. Advance the physical modeling of the underlying processes associated with the ionospheric plasma environment and the knowledge of its influences on human activity; C. Establish a prototype of a real time system to monitor the ionosphere, capable of providing useful assistance to users, which exploits all available resources and adds value for European services and products; D. Incorporate solutions to this system that respond to all end user needs and that are applicable in all geographical regions of European interest (polar, high and mid-latitudes, equatorial region). TRANSMIT will pave the way to establish in Europe a system capable of mitigating ionospheric threats on GNSS signals in real time

    Clonal dissemination of Klebsiella pneumoniae ST258 harbouring KPC-2 in Argentina

    Get PDF
    AbstractThe present work describes the abrupt emergence of Klebsiella pneumoniae carbapenemase (KPC) and characterizes the first 79 KPC-producing enterobacteria from Argentina (isolated from 2006 to 2010). The emergence of blaKPC-2 was characterized by two patterns of dispersion: the first was the sporadic occurrence in diverse enterobacteria from distant geographical regions, harbouring plasmids of different incompatibility groups and blaKPC-2 in an unusual genetic environment flanked by ISKpn8-ΔblaTEM-1 and ISKpn6-like. blaKPC-2 was associated with IncL/M transferable plasmids; the second was the abrupt clonal spread of K. pneumoniae ST258 harbouring blaKPC-2 in Tn4401a

    Increased Immune-Regulatory Receptor Expression on Effector T Cells as Early Indicators of Relapse Following Autologous Stem Cell Transplantation for Multiple Myeloma

    Get PDF
    The benefit of autologous stem cell transplantation (ASCT) in newly diagnosed myeloma patients, apart from supporting high dose chemotherapy, may include effects on T cell function in the bone marrow (BM). We report our exploratory findings on marrow infiltrating T cells early post-ASCT (day+100), examining phenotype and T cell receptor (TCR) repertoire, seeking correlations with timing of relapse. Compared to healthy donors (HD), we observed an increase in regulatory T cells (CD4+FoxP3+, Tregs) with reduction in CD4 T cells, leading to lower CD4:8 ratios. Compared to paired pre-treatment marrow, both CD4 and CD8 compartments showed a reduction in naïve, and increase in effector memory subsets, suggestive of a more differentiated phenotype. This was supported by increased levels of several immune-regulatory and activation proteins (ICOS, PD-1, LAG-3, CTLA-4 and GzmB) when compared with HD. Unsupervised analysis identified a patient subgroup with shorter PFS (p=0.031) whose BM contained increased Tregs, and higher immune-regulatory markers (ICOS, PD-1, LAG-3) on effector T cells. Using single feature analysis, higher frequencies of marrow PD-1+ on CD4+FoxP3- cells and Ki67+ on CD8 cells were independently associated with early relapse. Finally, studying paired pre-treatment and post-ASCT BM (n=5), we note reduced abundance of TCR sequences at day+100, with a greater proportion of expanded sequences indicating a more focused persistent TCR repertoire. Our findings indicate that, following induction chemotherapy and ASCT, marrow T cells demonstrate increased activation and differentiation, with TCR repertoire focusing. Pending confirmation in larger series, higher levels of immune-regulatory proteins on T cell effectors at day+100 may indicate early relapse

    Marrow-Infiltrating Regulatory T Cells Correlate with the Presence of Dysfunctional CD4⁺PD-1⁺ Cells and Inferior Survival in Patients with Newly Diagnosed Multiple Myeloma

    Get PDF
    PURPOSE: Immune dysregulation is described in multiple myeloma(MM). While preclinical models suggest a role for altered T cell immunity in disease progression, the contribution of immune dysfunction to clinical outcomes remains unclear. We aimed to characterise marrow infiltrating T cells in newly diagnosed patients and explore associations with outcomes of first line therapy. EXPERIMENTAL DESIGN: We undertook detailed characterisation of T cells from bone marrow(BM) samples, focusing on immune checkpoints and features of immune dysfunction, correlating with clinical features and progression free survival. RESULTS: We found that patients with MM had greater abundance of BM regulatory T cells (Tregs) which, in turn, expressed higher levels of the activation marker CD25 compared to healthy donors. Patients with a higher frequencies of Tregs (Treghi) had shorter PFS, and a distinct Treg immune checkpoint profile (increased PD-1, LAG-3) compared to Treglopatients. Analysis of CD4 and CD8 effectors revealed that low CD4effector:Treg ratio, and increased frequency of PD-1 expressing CD4effcells were independent predictors of early relapse over and above conventional risk factors such as genetic risk and depth of response. Ex-vivo functional analysis and RNA sequencing revealed that CD4 and CD8 cells from patients with greater abundance of CD4effPD-1+ cells displayed transcriptional and secretory features of dysfunction. CONCLUSIONS: BM infiltrating T cell subsets, specifically Treg and PD-1 expressing CD4 effectors, negatively influence clinical outcomes in newly diagnosed patients. Pending confirmation in larger cohorts and further mechanistic work, these immune parameters may inform new risk models, and present potential targets for immunotherapeutic strategies

    Does dietary calcium interact with dietary fiber against colorectal cancer? : a case-control study in Central Europe

    Get PDF
    BACKGROUND: An unfavorable trend of increasing rates of colorectal cancer has been observed across modern societies. In general, dietary factors are understood to be responsible for up to 70% of the disease’s incidence, though there are still many inconsistencies regarding the impact of specific dietary items. Among the dietary minerals, calcium intake may play a crucial role in the prevention. The purpose of this study was to assess the effect of intake of higher levels of dietary calcium on the risk of developing of colorectal cancer, and to evaluate dose dependent effect and to investigate possible effect modification. METHODS: A hospital based case–control study of 1556 patients (703 histologically confirmed colon and rectal incident cases and 853 hospital-based controls) was performed between 2000–2012 in Krakow, Poland. The 148-item semi-quantitative Food Frequency Questionnaire to assess dietary habits and level of nutrients intake was used. Data regarding possible covariates was also collected. RESULTS: After adjustment for age, gender, education, consumption of fruits, raw and cooked vegetables, fish, and alcohol, as well as for intake of fiber, vitamin C, dietary iron, lifetime recreational physical activity, BMI, smoking status, and taking mineral supplements, an increase in the consumption of calcium was associated with the decrease of colon cancer risk (OR = 0.93, 95% CI: 0.89-0.98 for every 100 mg Ca/day increase). Subjects consumed >1000 mg/day showed 46% decrease of colon cancer risk (OR = 0.54, 95% CI: 0.35-0.83). The effect of dietary calcium was modified by dietary fiber (p for interaction =0.015). Finally, consistent decrease of colon cancer risk was observed across increasing levels of dietary calcium and fiber intake. These relationships were not proved for rectal cancer. CONCLUSIONS: The study confirmed the effect of high doses of dietary calcium against the risk of colon cancer development. This relationship was observed across different levels of dietary fiber, and the beneficial effect of dietary calcium depended on the level of dietary fiber suggesting modification effect of calcium and fiber. Further efforts are needed to confirm this association, and also across higher levels of dietary fiber intake

    Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)
    corecore