222 research outputs found

    Assembly and Disassembly Planning by using Fuzzy Logic & Genetic Algorithms

    Full text link
    The authors propose the implementation of hybrid Fuzzy Logic-Genetic Algorithm (FL-GA) methodology to plan the automatic assembly and disassembly sequence of products. The GA-Fuzzy Logic approach is implemented onto two levels. The first level of hybridization consists of the development of a Fuzzy controller for the parameters of an assembly or disassembly planner based on GAs. This controller acts on mutation probability and crossover rate in order to adapt their values dynamically while the algorithm runs. The second level consists of the identification of theoptimal assembly or disassembly sequence by a Fuzzy function, in order to obtain a closer control of the technological knowledge of the assembly/disassembly process. Two case studies were analyzed in order to test the efficiency of the Fuzzy-GA methodologies

    Effective thermal conductivity of superuid helium: Laminar, turbulent and ballistic regimes

    Get PDF
    In this paper we extend previous results on the effective thermal conductivity of liquid helium II in cylindrical channels to rectangular channels with high aspect ratio. The aim is to compare the results in the laminar regime, the turbulent regime and the ballistic regime, all of them obtained within a single mesoscopic formalism of heat transport, with heat flux as an independent variable

    Wave reflection at a free interface in an anisotropic pyroelectric medium with nonclassical thermoelasticity

    Get PDF
    In this paper, the well-established two-dimensional mathematical model for linear pyroelectric materials is employed to investigate the reflection of waves at the boundary between a vacuum and an elastic, transversely isotropic, pyroelectric material. A comparative study between the solutions of (a) classical thermoelasticity, (b) Cattaneo–Lord–Shulman theory and (c) Green–Lindsay theory equations, characterised by none, one and two relaxation times, respectively, is presented. Suitable boundary conditions are considered in order to determine the reflection coefficients when incident elasto–electro–thermal waves impinge the free interface. It is established that, in the quasi-electrostatic approximation, three different classes of waves: (1) two principally elastic waves, namely a quasi-longitudinal Primary (qP) wave and a quasi-transverse Secondary (qS) wave; and (2) a mainly thermal (qT) wave. The observed electrical effects are, on the other hand, a direct consequence of mechanical and thermal phenomena due to pyroelectric coupling. The computed reflection coefficients of plane qP waves are found to depend upon the angle of incidence, the elastic, electric and thermal parameters of the medium, as well as the thermal relaxation times. The special cases of normal and grazing incidence are also derived and discussed. Finally, the reflection coefficients are computed for cadmium selenide observing the influence of (1) the anisotropy of the material, (2) the electrical potential and (3) temperature variations and (4) the thermal relaxation times on the reflection coefficients

    Cross-Component Energy Transfer in Superfluid Helium-4

    Get PDF
    \ua9 2024, Crown.The reciprocal energy and enstrophy transfers between normal fluid and superfluid components dictate the overall dynamics of superfluid 4He including the generation, evolution and coupling of coherent structures, the distribution of energy among lengthscales, and the decay of turbulence. To better understand the essential ingredients of this interaction, we employ a numerical two-way model which self-consistently accounts for the back-reaction of the superfluid vortex lines onto the normal fluid. Here we focus on a prototypical laminar (non-turbulent) vortex configuration which is simple enough to clearly relate the geometry of the vortex line to energy injection and dissipation to/from the normal fluid: a Kelvin wave excitation on two vortex anti-vortex pairs evolving in (a) an initially quiescent normal fluid, and (b) an imposed counterflow. In (a), the superfluid injects energy and vorticity in the normal fluid. In (b), the superfluid gains energy from the normal fluid via the Donnelly–Glaberson instability

    Classical and quantum vortex leapfrogging in two-dimensional channels

    Get PDF
    The leapfrogging of coaxial vortex rings is a famous effect which has been noticed since the times of Helmholtz. Recent advances in ultra-cold atomic gases show that the effect can now be studied in quantum fluids. The strong confinement which characterises these systems motivates the study of leapfrogging of vortices within narrow channels. Using the two-dimensional point vortex model, we show that in the constrained geometry of a two-dimensional channel the dynamics is richer than in an unbounded domain: alongside the known regimes of standard leapfrogging and the absence of it, we identify new regimes of image-driven leapfrogging and periodic orbits. Moreover, by solving the Gross-Pitaevskii equation for a Bose-Einstein condensate, we show that all four regimes exist for quantum vortices too. Finally, we discuss the differences between classical and quantum vortex leapfrogging which appear when the quantum healing length becomes significant compared to the vortex separation or the channel size, and when, due to high velocity, compressibility effects in the condensate becomes significant

    Turbulent superfluid profiles in a counterflow channel

    Full text link
    We have developed a two-dimensional model of quantised vortices in helium II moving under the influence of applied normal fluid and superfluid in a counterflow channel. We predict superfluid and vortex-line density profiles which could be experimentally tested using recently developed visualization techniques.Comment: 3 double figures, 9 page
    • …
    corecore