13 research outputs found

    Anandamide Capacitates Bull Spermatozoa through CB1 and TRPV1 Activation

    Get PDF
    Anandamide (AEA), a major endocannabinoid, binds to cannabinoid and vanilloid receptors (CB1, CB2 and TRPV1) and affects many reproductive functions. Nanomolar levels of anandamide are found in reproductive fluids including mid-cycle oviductal fluid. Previously, we found that R(+)-methanandamide, an anandamide analogue, induces sperm releasing from bovine oviductal epithelium and the CB1 antagonist, SR141716A, reversed this effect. Since sperm detachment may be due to surface remodeling brought about by capacitation, the aim of this paper was to investigate whether anandamide at physiological concentrations could act as a capacitating agent in bull spermatozoa. We demonstrated that at nanomolar concentrations R(+)-methanandamide or anandamide induced bull sperm capacitation, whereas SR141716A and capsazepine (a TRPV1 antagonist) inhibited this induction. Previous studies indicate that mammalian spermatozoa possess the enzymatic machinery to produce and degrade their own AEA via the actions of the AEA-synthesizing phospholipase D and the fatty acid amide hydrolase (FAAH) respectively. Our results indicated that, URB597, a potent inhibitor of the FAAH, produced effects on bovine sperm capacitation similar to those elicited by exogenous AEA suggesting that this process is normally regulated by an endogenous tone. We also investigated whether anandamide is involved in bovine heparin-capacitated spermatozoa, since heparin is a known capacitating agent of bovine sperm. When the spermatozoa were incubated in the presence of R(+)-methanandamide and heparin, the percentage of capacitated spermatozoa was similar to that in the presence of R(+)-methanandamide alone. The pre-incubation with CB1 or TRPV1 antagonists inhibited heparin-induced sperm capacitation; moreover the activity of FAAH was 30% lower in heparin-capacitated spermatozoa as compared to control conditions. This suggests that heparin may increase endogenous anandamide levels. Our findings indicate that anandamide induces sperm capacitation through the activation of CB1 and TRPV1 receptors and could be involved in the same molecular pathway as heparin in bovines

    Comparison of different fertilisation media for an in vitro maturation-fertilisation-culture system using flow-cytometrically sorted X chromosome-bearing spermatozoa for bovine embryo production

    No full text
    High demand exists among commercial cattle producers for in vitro-derived bovine embryos fertilised with female sex-sorted spermatozoa from high-value breeding stock. The aim of this study was to evaluate three fertilisation media, namely M199, synthetic oviductal fluid (SOF) and Tyrode's albumin-lactate-pyruvate (TALP), on IVF performance using female sex-sorted spermatozoa. In all, 1143, 1220 and 1041 cumulus-oocyte complexes were fertilised in M199, SOF and TALP, respectively. There were significant differences among fertilisation media (P<0.05) in cleavage rate (M199≤57%, SOF≤71% and TALP≤72%), blastocyst formation (M199≤9%, SOF≤20% and TALP≤19%), proportion of Grade 1 blastocysts (M199≤15%, SOF≤52% and TALP≤51%), proportion of Grade 3 blastocysts (M199≤58%, SOF≤21% and TALP≤20%) and hatching rates (M199≤29%, SOF≤60% and TALP≤65%). The inner cell mass (ICM) and trophectoderm (TE) cells of Day 7 blastocysts were also affected by the fertilisation medium. Embryos derived from SOF and TALP fertilisation media had higher numbers of ICM, TE and total cells than those fertilised in M199. In conclusion, fertilisation media affected cleavage rate, as well as subsequent embryo development, quality and hatching ability. SOF and TALP fertilisation media produced significantly more embryos of higher quality than M199.Fil: Ferré, Luis Bernardo. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; ArgentinaFil: Bogliotti, Yanina. University of California; Estados UnidosFil: Chitwood, James L.. University of California; Estados UnidosFil: Fresno Rodríguez, Cristóbal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Catolica de Córdoba. Facultad de Ingeniería; ArgentinaFil: Ortega, Hugo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Ciencias Veterinarias del Litoral. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias. Instituto de Ciencias Veterinarias del Litoral; ArgentinaFil: Kjelland, Michael E.. Conservation, Genetics and Biotech; Estados UnidosFil: ROSS, Pablo Juan. University of California; Estados Unido
    corecore