607 research outputs found

    The 346 A.D. earthquake( Central-Southern Italy): an archaeoseismological approach

    Get PDF
    The 346 A.D. earthquake is known through sparse historical sources. It is mentioned by Hyeronimus as felt in Rome and responsible for damage in the ancient Campania Province. Four epigraphs report the earthquake as the cause for the restorations of buildings at Aesernia-Isernia, Allifae-Alife, Telesia-Telese and Saepinum-Sepino. On this basis, an area possibly struck by the earthquake was already defined in the literature. Another seventeen epigraphs mentioning restoration or re-building of edifices in localities of central-southern Italy (without explicitly referring to the earthquake as the cause of the damage) are possibly related to the earthquake effects. We tried to enhance our knowledge on the 346 earthquake through archaeoseismological analyses. The investigation has benefited from specific fieldwork during archaeological excavations and a critical review of the available archaeological literature. However, a correct archaeoseismological interpretation is hindered by the occurrence of two earthquakes (346 and 375 A.D.) in a short time span and in adjacent areas (whose effects may be archaeo-chronologically undistinguishable) and the not always univocal evidence of the seismic origin of the detected collapses or restoration of structures. For this reason we propose a representation of the 346 A.D. effects through two extreme pictures: 1) the localities for which conclusive data on the earthquake effects are available and 2) the data of point 1 plus the localities for which archaeoseismological data consistent with the earthquake are available. The latter view defines an area of possible damage related to the 346 event larger than that previously known. In particular, the earthquake damage may result from a seismic sequence similar to that, which struck a part of the central and the southern Apennines in 1456, or from an event comparable to that which occurred in 1805, responsible for widespread damage in the northern sector of the southern Apennines

    Paleoseismology of silent faults in the Central Apennines (Italy): the Campo Imperatore Fault (Gran Sasso Range Fault System)

    Get PDF
    Paleoseismological analyses were performed along the Campo Imperatore Fault (part of the Gran Sasso Range Fault System) in order to define the seismogenic behaviour (recurrence interval for surface faulting events, elapsed time since the last activation, maximum expected magnitude). Four trenches were excavated across secondary faults which are related to the main fault zone. The youngest event (E1) occurred after 3480-3400 years BP; a previous event (E2) occurred between 7155-7120/7035-6790 years BP and 5590-5565/5545-5475 years BP, while the oldest one (E3) has a Late Pleistocene age. The chronological interval between the last two displacement events ranges between 1995 and 6405 years. The minimum elapsed time since the last activation is 800 years, due to the absence of historical earthquakes which may have been caused by the Campo Imperatore Fault and based on the completeness of the historical catalogues for the large magnitude events in the last eight centuries. Based on the length of the fault surficial expression, earthquakes with M 6.95 may be expected from the activation of the entire Gran Sasso Range Fault System. The effects of the fault activation were investigated through the simulation of a damage scenario obtained by means of the FaCES computer code, made by the National Seismic Survey for civil protection purposes. The damage scenario shows that the activation of the Gran Sasso Range Fault System may be responsible for an earthquake with epicentral intensity I0 10.5 MCS, with a number of collapsed buildings ranging between 7900 and 31100 and a number of damaged buildings ranging between 99 000 and 234 000. The investigated case defines, therefore, a high risk level for the region affected by the Campo Imperatore Fault

    Le fonti sul terremoto del 10 settembre 1881 in provincia di Chieti: revisione critica e nuove conoscenze

    Get PDF
    Si e' provveduto ad una rivalutazione della distribuzione del danno legato al terremoto del 10 settembre 1881 nella provincia di Chieti, mediante una rilettura delle fonti e l'acquisizione di nuova documentazione d'archivio

    Tracce archeologiche di un terremoto tardo-antico nella Piana del Fucino (Italia centrale)

    Get PDF
    Il tempo di ricorrenza definito dalle indagini paleosismologiche sulle faglie dell’Appennino abruzzese è nell’ordine dei 1500-2500 anni. Pertanto, in caso di terremoto storico, di elevata magnitudo, relativamente recente (es. il terremoto del 1703 nell’Aquilano o quello del 1915 nella Marsica), l’evento sismico precedente potrebbe essere stato causato dalla stessa sorgente sismogenetica in un’epoca per cui si ha carenza di informazione storica ma abbondanza di fonti archeologiche. Per questo motivo, accanto alle ricerche paleosismologiche, tradizionalmente indirizzate alla definizione del comportamento sismogenetico di una faglia, fin dalla metà degli anni 90 furono avviate ricerche archeosismologiche, mirate all’identificazione di tracce di terremoti distruttivi su emergenze archeologiche, prevalentemente di età classica (Galadini e Galli, 1996). Gli studi archeosismologici nella regione abruzzese hanno consentito di acquisire finora informazioni sugli effetti di tre terremoti distruttivi, noti ai cataloghi sismici (es. Boschi et al., 1995), di cui due (II sec. d.C. e 484-508 d.C.) con epicentro nella regione e un altro (346 d.C.) originato in area limitrofa (Galadini e Galli, 2001; 2004). Nel 2004, l’Istituto Nazionale di Geofisica e Vulcanologia ha avviato una collaborazione con la Soprintendenza per i Beni Archeologici dell’Abruzzo su tematiche geoarcheologiche, sia in prospettiva paleoambientale che per una migliore comprensione degli effetti delle catastrofi naturali del passato su siti archeologici dell’area appenninica. In questo ambito, è stato possibile effettuare indagini in prospettiva archeosismologica durante le fasi di scavo in alcuni siti archeologici della Marsica e della Valle Subequana, come l’anfiteatro di San Benedetto dei Marsi, la villa produttiva di Avezzano-Macerine, il tempio di Castel di Ieri, il piazzale antistante il santuario di Ercole, gli edifici prospicienti la via del Miliario e l’area del Foro ad Alba Fucens. Nel caso dell’anfiteatro di San Benedetto dei Marsi, le evidenze della distruzione sismica vengono dal crollo sincrono delle grandi lastre di pietra che delimitavano il balteo, dalla rotazione di blocchi attorno all’asse verticale, dall’espulsione di angolata in uno degli ambienti prossimi all’ingresso nord della struttura, oltre che dai crolli di ampie parti dell’edificio. Nella villa produttiva di Avezzano, ai crolli di muri di costruzione tarda si accompagnano vistose tracce di combustione, su resti pressoché integri delle travature. Le unità di crollo furono rinvenute al di sopra del piano di calpestio che era ancora in uso al momento della distruzione. La subitaneità dell’evento è testimoniata dal reperimento di una notevole quantità di materiali nelle unità di crollo stesse, a testimonianza di un abbandono improvviso, senza asportazione degli oggetti di uso comune. Ad Alba Fucens, le evidenze della distruzione cosismica erano già note grazie alle pubblicazioni relative alle campagne di scavo soprattutto degli anni 50 e 60. Le fotografie di archivio mostrano i pilastri della cosiddetta Via dei Pilastri in posizione di crollo attraverso la strada, la statua dell’Ercole Epitrapezio in giacitura sul piano di calpestio del sacello, colonne in posizione di crollo con capitello ancora giustapposto

    Effect of time-dependence on probabilistic seismic hazard maps and deaggregation for the central apennines, Italy

    Get PDF
    We produce probabilistic seismic hazard assessments for the Central Apennines, Italy, using time-dependent models that are characterized using a Brownian Passage Time (BPT) recurrence model. Using aperiodicity parameters,  of 0.3, 0.5, and 0.7, we examine the sensitivity of the probabilistic ground motion and its deaggregation to these parameters. For the seismic source model we incorporate both smoothed historical seismicity over the area and geological information on faults. We use the maximum magnitude model for the fault sources together with a uniform probability of rupture along the fault (floating fault model) to model fictitious faults to account for earthquakes that cannot be correlated with known geologic structural segmentation. We show maps for peak ground acceleration (PGA) and 1.0-Hz spectral acceleration (SA1) on rock having 10% probability of exceedence (PE) in 50 years. We produce maps to compare the separate contributions of smoothed seismicity and fault components. In addition we construct maps that show sensitivity of the hazard for different  parameters and the Poisson model. For the Poisson model, the addition of fault sources to the smoothed seismicity raises the hazard by 50 % at locations where the smoothed seismicity contributes the highest hazard, and up to 100 % at locations where the hazard from smoothed seismicity is low. For the strongest aperiodicity parameter (smallest ), the hazard may further increase 60-80 % or more or may decrease by as much as 20 %, depending on the recency of the last event on the fault that dominates the hazard at a given site. In order to present the most likely earthquake magnitude and/or the most likely source-site distance for scenario studies, we deaggregate the seismic hazard for SA1 and PGA for two important cities (Roma and l’Aquila) . For PGA, both locations show the predominance of local sources, having magnitudes of about 5.3 and 6.5 respectively. For SA1 at a site in Rome, there is significant contribution from local smoothed seismicity, and an additional contribution from the more distant Apennine faults having magnitude around 6.8. For l’Aquila, the predominant sources remain local. In order to show the variety of impact of different  values we also obtained deaggregations for another three sites. In general, as  decreases (periodicity increases), the deaggregation indicates that the hazard is highest near faults with the highest earthquakes rates. This effect is strongest for the long-period (1 s) ground motions

    Geomorphic signatures of recent normal fault activity versus geological evidence of inactivity: case studies from the central Apennines (Italy)

    Get PDF
    We have here analysed two normal faults of the central Apennines, one that affects the south-western slopes of theMontagna dei Fiori–Montagna di Campli relief, and the other that is located along the south-western border of the Leonessa intermontane depression. Through this analysis, we aim to better understand the reliability of geomorphic features, such as the fresh exposure of fault planes along bedrock scarps as certain evidence of active faulting in the Apennines, and to define the Quaternary kinematic history of these tectonic structures. The experience gathered from these two case studies suggests that the so-called ‘geomorphic signature’ of recent fault activity must be supported by wider geomorphologic and geologic investigations, such as the identification of displaced deposits and landforms not older than the Late Pleistocene, and/or an accurate definition of the slope instabilities. Our observations indicate that the fault planes studied are exposed exclusively because of the occurrence of non-tectonic processes, i.e. differential erosion and gravitational phenomena that have affected the portions of the slopes that are located in the hanging wall sectors. The geological evidence we have collected indicates that the Montagna dei Fiori–Montagna di Campli fault was probably not active during the whole of theuaternary, while the tectonic activity of the Leonessa fault ceased (or strongly reduced) at least during the Late Pleistocene, and probably since the Middle Pleistocene. The present lack of activity of these tectonic structures suggests that the fault activation for high magnitude earthquakes that produce surface faulting is improbable (i.e.Mw5.5–6.0, with reference to the Apennines, according toMichetti et al. [Michetti, A.M., Brunamonte, F., Serva, L.,Vittori, E. (1996), Trench investigations of the 1915 Fucino earthquake fault scarps (Abruzzo, Central Italy):geological evidence of large historical events, J. Geoph. Res.,101, 5921–5936; Michetti, A.M., Ferreli, L., Esposito, E.,Porfido, S., Blumetti, A.M., Vittori, E., Serva, L., Roberts, G.P. (2000)]). If, according to the current view, the shifting of the intra-Apennine extension towards the Adriatic sectors is still active, the Montagna dei Fiori–Montagna di Campli fault might be involved in active extensional deformation in the future

    Early capture of a central Apennine (Italy) internal basin as a consequence of enhanced regional uplift at the Early-Middle Pleistocene Transition

    Get PDF
    Extensional tectonics in the inner portion of the central Apennines began during the Late Pliocene-Early Pleistocene. It resulted in the formation of chain-parallel normal fault systems, whose activity through the Quaternary led to the formation of intermontane tectonic basins; these represented traps for continental sedimentary sequences. In particular, during the Early Pleistocene most of the central Apennine depressions hosted lakes, testifying to endorheic hydrographic networks. Afterwards, lacustrine environment was replaced by fluvial regimes, aged at the Middle Pleistocene, as the hydrographic systems of the basins were captured by headward regressive erosion coming from the outermost sectors of the chain. This is testified by a strong erosional phase that cut into the lake sequences, due to deepening of streams and river incisions, and the subsequent deposition of embedded fluvial deposits. This environmental change is commonly attributed to a regional relief enhancement, as a consequence of the increase of regional uplift of the central Apennines (and geologically seen in many parts of the Apennine chain), generically aged between the upper part of the Early Pleistocene and the lower part of the Middle Pleistocene [e.g. D’Agostino et al. 2001]. The Subequana Valley and Middle Aterno Valley are part of a cluster of Quaternary tectonic depressions distributed along the current course of the Aterno River - here termed the Aterno basin system - which also includes the L’Aquila and Paganica-Castelnuovo-San Demetrio basins to the north, and the Sulmona basin to the south. They are located in innermost sector of the central Apennines, in correspondence of the chain divide. These basins are hydrographically connected by the Aterno river, one of the moste important fluvial basins of the “Adriatic domain” which runs south-easterly along the eastern side of the Subequana basin and Middle Aterno Valley, flows to the Sulmona basin through the San Venanzio gorges, where it joins to the Pescara river. The depressions are bounded towards the NE by an active normal fault system that led the formation and the tectonic evolution of the basins [Falcucci et al. 2011]. The analysis of the early Quaternary geological evolution of this depression can represent a significant case study to refine the knowledge of the Early-Middle Pleistocene tectonic/environmental transition, especially in terms of timing, taking into account that uplift rate is defined as having been larger along the chain divide. We integrated geological, geomorphological, paleomagnetic and radiometric dating with the 40Ar/39Ar method to reconstruct the morpho-stratigraphic setting of the Subequana Valley-Middle Aterno river system, defining the paleo-environmental features and chronology of the depositional and erosive events that have characterised the Quaternary geological and structural evolution of these basins. In detail, a synchronous lacustrine depositional phase was recognised in the Subequana basin and the Middle Aterno Valley. Paleomagnetic analysis performed along some sections of these deposits exposed in the Subequana valley attested a reverse magnetisation, reasonably related to the Matuyama Chron. The lacustrine sequence of the Subequana valley passes upwards to sand and gravel, testifying for the infilling of the lake and the onset of a fluvial regime that displays a direction of the drainage towards the north, i.e. opposite to the present Aterno river flow. At the topmost portion of the lake deposits, two subsequent tephra layers were identified and dated by means of 40Ar/39Ar method, at ~890ka, for the lower tephra, and ~805ka for the upper one. It is worth noting that a “short” direct magnetisation event occurred just above the lower tephra, whose significance is still under investigation. This data constraints the infilling of the lake in the Subequana valley very close to the Early-Middle Pleistocene transition. Subsequent to the infilling of the Subequana basin, a fluvial regime, characterised by a northward drainage direction – i.e. opposite to the current one –, was established. Then, after a strong erosional phase, the presence of a new coeval fluvial depositional phase within the Subequana Valley and the Middle Aterno Valley, with flow direction towards the south-east, indicates the formation of a paleo-Aterno. We identified a further fluvial sequence, embedded within the lacustrine sequence through an evident erosional surface. These deposits are found at the northern part of the Subequana valley, where they laterally pass to fluvial deposits that crop out at the southern part of the Middle Aterno river valley; this sequence shows a flow direction consistent with the current direction of the Aterno river. This morpho-stratigraphic setting, schematized in Fig. 1, indicates that after an intense erosional phase, which dissected the lake sequence, the Subequana-Middle Aterno river valley system has been hydrographically connected by the course of a paleo-Aterno river; this river flowed southerly, towards the San Venanzio gorges.Such morpho-stratigraphic interpretation is corroborated by geological observations performed in the Sulmona basin. At the outlet of the Aterno river, we found slope derived breccias, commonly attributed to the Early Pleistocene, that lay over the bedrock Their depositional geometry suggests that the breccias deposited when the Aterno river thalweg was not present yet, that is when the Subequana Valley was hosting a lake and no drainage was hydrographically connecting the valley to the Sulmona basin. Then, an alluvial fan body unconformably overlays the breccias; the fan, suspended over the Aterno river thalweg, was fed by a stream incision coinciding with the paleo-San Venanzio gorges. Lastly, a fluvial deposit is found embedded within the breccias and the alluvial fan, sourcing from the San Venanzio gorges as well. A tephra layer was found interbedded to the sedimentary body. The volcanic deposit was related to the “Pozzolane Rosse” eruption of the Colli Albani district, dated at 456±4 ka BP [Galli et al. 2010]. This fluvial deposit indicates the presence a paleo-Aterno river flowing from the Subequana valley. Therefore, the described morpho-stratigraphic framework, and the obtained chronological elements constrain the capture of the endorheic hydrographic network of the Subequana valley-Middle Aterno Valley during a time span comprised between ~800ka and ~450ka. In this perspective, it is worth noting that endorheic hydrographic networks of other basins (e.g. the Leonessa basins) located along the innermost portion of the central Apennine chain were captured during the same time span by headward erosion of streams and rivers related to the “thyrrenian hydrographic system” [e.g. Fubelli et al 2009]. This provides new elements for unravelling coupling between river incision potential and capability, and the Apennine chain uplift

    Analisi dell’attività quaternaria delle faglie normali della Montagna dei Fiori e del bacino di Leonessa

    Get PDF
    La definizione dell’attività di strutture tettoniche è un pre-requisito fondamentale per la comprensione delle caratteristiche sismotettoniche di un settore del territorio italiano che, come l’Appennino centrale, è stato interessato in tempi storici da eventi sismici di elevata magnitudo. Dunque, l’individuazione e la caratterizzazione dell’attività tardopleistocenica-olocenica di faglie potenzialmente responsabili di forti terremoti è di cruciale importanza in un’ottica di valutazione della pericolosità sismica. Nel presente lavoro vengono analizzate due faglie normali che interessano l’Appennino centrale, la faglia normale che delimita ad ovest la Montagna dei Fiori, uno dei rilievi più esterni della catena, e quella che borda a sud-ovest il bacino di Leonessa, con l’obiettivo di dare un contributo per una migliore definizione delle caratteristiche sismotettoniche di questo settore del territorio nazionale. La faglia normale della Montagna dei Fiori è una struttura lunga almeno 15 km la cui attività è stata responsabile della dislocazione di circa 900 m del substrato carbonatico. Il piano di faglia e la scarpata ad esso associata sono visibili in modo discontinuo lungo il versante. I rilevamenti geologici e geomorfologici effettuati chiariscono come l’esposizione del piano di faglia sia esclusivamente legata a fenomeni gravitativi, anche di grandi dimensioni, che interessano le formazioni calcareo-marnose (Scaglia Cinerea, Marne con Bisciaro, Marne con Cerrogna) affioranti al tetto della struttura, e a fenomeni di erosione selettiva fra le formazione della successione umbro-marchigiana affioranti al letto ed al tetto. La faglia, inoltre, è sigillata da una paleosuperficie di origine erosiva sospesa varie centinaia di metri al di sopra del fondovalle attuale del fiume Salinello (in località Colle Osso Caprino) e da brecce di versante (in località Pozzoranno) associabili a quelle riconosciute in modo ubiquitario in Appennino entrale ed attribuite al Pleistocene inferiore. Come per il caso della Montagna dei Fiori, il piano della faglia bordiera del bacino di Leonessa è visibile in modo discontinuo lungo i versanti che delimitano il settore meridionale della depressione. I nostri rilevamenti di terreno ci consentono di attribuire l’esposizione del piano i) a fenomeni gravitativi che interessano la fascia detritica depostasi alla base della scarpata di faglia e ii) a fenomeni di erosione selettiva fra i detriti ed il substrato carbonatico affiorante al letto della struttura tettonica, ad opera di corsi d’acqua perpendicolari al versante. Depositi di conoide alluvionale (“conoide alluvionale di Leonessa”) attribuiti da alcuni autori ad un contesto cronologico compreso fra la fine del Pleistocene inferiore ed il Pleistocene medio e che determinano una superficie terrazzata chiaramente visibile in tutto il bacino, non sembrano essere stati interessati (né dislocati né basculati) dall’attività di tale faglia. Inoltre, ulteriori due ordini di conoide alluvionale depostisi al di sopra di quello sopra citato ed attribuibili tentativamente al Pleistocene superiore, sigillano chiaramente la struttura tettonica. Dunque, dalle nostre osservazioni si evince che, per quello che riguarda la faglia normale della Montagna dei Fiori, tale struttura tettonica non risulta essere attiva almeno a partire dal Pleistocene inferiore e che l’esposizione del piano di faglia è esclusivamente legata a fenomeni gravitativi e di morfoselezione. Ciò corroborerebbe quanto proposto da altri autori che attribuiscono a questa struttura tettonica esclusivamente un’attività pre- e sin- fase tettonica compressiva. Per quello che riguarda il bacino di Leonessa, è possibile ipotizzare che la faglia bordiera sia stata attiva fino al Pleistocene inferiore, creando lo spazio per l’accumulo dei depositi del conoide alluvionale di Leonessa. L’attività sarebbe poi terminata, o quantomeno si sarebbe ridotta ad un tasso decisamente inferiore a quello degli agenti morfodinamici, a partire dal Pleistocene medio

    Site effects “on the rock”: the case of Castelvecchio Subequo (L’Aquila, central Italy)

    Get PDF
    The April 6, 2009 L’Aquila earthquake was responsible for an “anomalous”, relatively high degree of damage (i.e. Is 7 MCS scale) at Castelvecchio Subequo (CS). Indeed, the village is located at source-to-site distance of about 40 km, and it is surrounded by other inhabited centres to which considerably lower intensities, i.e. Is 5-6, have been attributed. Moreover, the damage was irregularly distributed within CS, being mainly concentrated in the uppermost portion of the old village. Geophysical investigations (ambient seismic noise and weak ground motions analyses) revealed that site effects occurred at CS. Amplifications of the ground motion, mainly striking NE-SW, have been detected at the uppermost portion of the carbonate ridge on which the village is built. Geological/structural and geomechanical field surveys defined that the CS ridge is affected by sets of fractures, joints and shear planes – mainly roughly NW-SE and N-S trending – that are related to the deformation zone of the Subequana valley fault system and to transfer faults linking northward the mentioned tectonic feature with the Middle Aterno Valley fault system. In particular, our investigations highlight that seismic amplifications occur where joints set NW-SE trending are open. On the other hand, no amplification is seen in portions of the ridge where the bedrock is densely fractured but no open joints occur. The fracture opening seems related to the toppling tendency of the bedrock slabs, owing to the local geomorphic setting. These investigations suggest that the detected amplification of the ground motion is probably related to the polarization of the seismic waves along the Castelvecchio Subequo ridge, with the consequent oscillation of the rock slabs perpendicularly to the fractures azimuth

    Fagliazione normale attiva lungo il versante occidentale del Monte Morrone (Appennino Centrale, Italia)

    Get PDF
    L’Appennino Centrale è interessato da sistemi attivi di faglie normali potenzialmente responsabili di terremoti di elevata magnitudo (fino a 7). Alcuni forti terremoti storici avvenuti in questo settore di catena appenninica sono stati attribuiti all’attivazione di alcune di questi sistemi di faglia, mediante analisi paleosismologiche e il confronto fra la distribuzione del danneggiamento associato a tali eventi sismici e la distribuzione spaziale delle faglie attive. Ad alcune di queste strutture tettoniche attive, invece, non è possibile associare alcun evento sismico storico noti da catalogo e per questo esse vengono considerate come strutture sismogenetiche silenti. Pertanto, a queste faglie è comunemente attribuita un’elevata pericolosità sismica. Il presente studio è mirato a caratterizzare l’attività tardo-Quaternaria di una queste faglie silenti, nello specifico quella che borda il versante occidentale del Monte Morrone (nell’Appennino abruzzese), cercando di definirne 1) la cinematica, 2) il tasso di movimento e 3) la massima magnitudo attesa da un evento di attivazione. Le analisi (comprendenti rilevamento geologico, geomorfologico e strutturale, nonché datazioni al 14C e determinazioni tefrostratigrafiche) effettuate lungo l’espressione in superficie di questa struttura tettonica, costituita da due segmenti di faglia paralleli, orientati NW-SE, hanno permesso di confermare che essa è prevalentemente caratterizzata da una cinematica normale, con una minore componente obliqua sinistra. Tale cinematica sarebbe consistente con un’estensione orientata circa N 20°. Il tasso di movimento del segmento di faglia occidentale è stato definito mediante l’individuazioni di depositi (prevalentemente conoidi alluvionali), cronologicamente vincolati, dislocati dall’attività di tale segmento. Lo slip rate è risultato essere dell’ordine di 0.4±0.07 mm/anno. Per quanto concerne il segmento orientale, la sua attività tardopleistocenica – olocenica è indicata dalla dislocazione lungo di esso di depositi di versante attribuiti all’UMG. Tuttavia, la mancanza di sedimenti e/o morfologie coevi nel blocco di letto ha impedito di valutare il tasso di movimento di questo segmento. Tuttavia, le analisi geologico-strutturali effettuate, unite ad una revisione critica della letteratura disponibile sui modelli evolutivi dei sistemi di faglie normali, hanno permesso di ipotizzare per il segmento di faglia orientale uno tasso di movimento >0 ma inferiore a quello definito per il segmento occidentale, ossia <0.4±0.07 mm/anno. Questo consente di definire per l’intero sistema di faglie del Monte Morrone uno slip rate compreso fra 0.4±0.07 e 0.8±0.09 mm/anno. Infine, applicando le equazioni empiriche proposte da Wells e Coppersmith (1994) che legano la magnitudo momento e i) la lunghezza in superficie della struttura tettonica e ii) il rigetto (massimo e medio) per evento di attivazione – considerando un tempo di ricorrenza di circa 2000anni – è stato possibile definire che la massima magnitudo attesa da un terremoto originato lungo il sistema di faglie normali del Monte Morrone (lungo circa 23 km) è dell’ordine di 6.6-6.7
    corecore