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Abstract 

The April 6, 2009 L’Aquila earthquake was responsible for an “anomalous”, relatively high degree of 

damage (i.e. Is 7 MCS scale) at Castelvecchio Subequo (CS). Indeed, the village is located at source-to-site 

distance of about 40 km, and it is surrounded by other inhabited centres to which considerably lower 

intensities, i.e. Is 5-6, have been attributed. Moreover, the damage was irregularly distributed within CS, 

being mainly concentrated in the uppermost portion of the old village. Geophysical investigations (ambient 

seismic noise and weak ground motions analyses) revealed that site effects occurred at CS. Amplifications of 

the ground motion, mainly striking NE-SW, have been detected at the uppermost portion of the carbonate 

ridge on which the village is built. Geological/structural and geomechanical field surveys defined that the CS 

ridge is affected by sets of fractures, joints and shear planes – mainly roughly NW-SE and N-S trending – 

that are related to the deformation zone of the Subequana valley fault system and to transfer faults linking 

northward the mentioned tectonic feature with the Middle Aterno Valley fault system. In particular, our 

investigations highlight that seismic amplifications occur where joints set NW-SE trending are open. On the 

other hand, no amplification is seen in portions of the ridge where the bedrock is densely fractured but no 

open joints occur. The fracture opening seems related to the toppling tendency of the bedrock slabs, owing to 

the local geomorphic setting. These investigations suggest that the detected amplification of the ground 

motion is probably related to the polarization of the seismic waves along the Castelvecchio Subequo ridge, 

with the consequent oscillation of the rock slabs perpendicularly to the fractures azimuth. 
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1. Introduction 

On April 6, 2009 the central Apennines have been struck by a Mw 6.3 earthquake, the largest in Italy since 

Irpinia 1980. The seismic event has been caused by the activation of an about 10-13-km-long (at surface) 

extensional tectonic structure, i.e. the Paganica fault (hereafter PF), located about 10 kilometres E of the city 

of L’Aquila (e.g. Falcucci et al. 2009; Emergeo Working Group 2010; Boncio et al. 2010). 

The quake severely damaged the densely populated L’Aquila plain area and surroundings, causing 308 

fatalities and widespread destruction in L’Aquila and in tens of villages (e.g. Onna, Paganica, San Demetrio 

ne’ Vestini, Fossa, etc.). 

The macroseismic survey, performed in the aftermath of the seismic event, defined the intensities (MCS 

scale) of the 2009 earthquake (Galli and Camassi 2009): the mesoseismal area (i.e. Is>7-8), elongated 

roughly 20 km SE of the epicentral zone along the Aterno river valley, comprised 16 villages with Is≥8, six 

of which suffered damage estimated with Is≥9. The maximum intensities, i.e. Imax 9-10, were attributed to 

the villages of Castelnuovo and Onna (Fig. 1a). 

As expected, the damage decreased moving away from the source. In particular, along the Aterno river 

valley, the intensities decreased to Is=5-6 about 40 km far from L’Aquila. Nevertheless, the intensity 

distribution revealed an evident “anomaly” in the southern portion of the damaged region, i.e. in the 

Subequana valley: here, Is=7, 6-7 and 7 were indeed attributed to three villages, namely Castelvecchio 

Subequo, Castel di Ieri and Goriano Sicoli, respectively, located among others that were affected by 

evidently lower damage, i.e. estimated with Is=5-6 (such as Molina Aterno, Goriano Valli and Acciano) and 

6 (such as Secinaro) (Fig. 1a, inset). 

In particular, besides the anomalous intensity, Castelvecchio Subequo (hereafter CS) showed a peculiar 

distribution of damage. The strongest damage affected, indeed, the uppermost portion of the village, where 

the partial collapse of several buildings occurred. Although the aging and the characteristics of the buildings 

have certainly contributed to the intensity related to the 2009 seismic event, nevertheless the oldest portion of 

the village has not been affected by a homogeneous damage degree. 

In light of this, the present work analyses the CS case, aiming at unveiling the possible cause of the 

“anomalous” MCS intensity (considering the distance from the causative fault of the earthquake) and the 

irregular distribution of the damage within the village. 

More specifically, we will evaluate the possible occurrence of site effects along the narrow carbonate ridge 

on which the village is built by means of ambient seismic noise and weak ground motions analyses. These 

geophysical investigations will be coupled with detailed geologic/structural field observations performed in 

the area of CS as well as with quantitative geomechanical characterisation of the rock mass. Our aim is to 

define the role played by the local geologic characteristics and complexities in the local seismic response. 

Within this light, it must be noted that several studies pointed out the occurrence of seismic amplifications 

along topographic “irregularities” (Bard, 1982; Çelebi 1987; Kawase and Aki 1990; Ponti and Wells 1991; 

Pedersen et al. 1994; Chavez-Garcia et al. 1996; Spudich et al. 1996; Athanasopoulos et al. 1999; Faccioli et 

al. 2002; Massa et al. 2010; Pischiutta et al. 2010). In particular, the geometrical features of morphological 



 
3

conditions are used in many works to simulate the amplification on hills and crests (Boore, 1972; Griffiths 

and Bollinger, 1979; Sánchez-Sesma et al., 1982; Bard and Tucker, 1985; Sánchez-Sesma, 1985;Géli and 

Bard, 1988; Sánchez-Sesma, 1990; Sánchez-Sesma and Campillo, 1991; Chávez-García et al., 1996; 

Bouchon and Barker, 1996; Komatitsch and Vilotte, 1998; Le Brun et al., 1999; Paolucci, 2002) although, in 

many cases, the simulations underestimate the amplifications, as the overall heterogeneities of the sites are 

not supported by the resolutions of the models. In other case studies, the surface weathering (Le Brun et al. 

1999; Graizer 2009), in any cases due to presence of faults (Rovelli et al. 2002), and the jointing conditions 

of the rock masses (Martino et al., 2006; Hailemikael et al., 2010) are invoked to explain seismic 

amplification. 

The results of the present work – derived from the necessary merger of geological and geophysical 

investigations – are of practical importance as they constrain the guidelines for reconstruction and repairs of 

the historical buildings in a typical picturesque village of the central Apennine region. 

 

2. Geological setting 

2.1 Seismotectonic framework of the central Apennines 

The Apennine belt formed since the Oligocene, during the Alpine-Himalayan orogenesis. The “backbone” of 

the chain is represented by thrust and fold systems that progressively migrated towards E and NE, displacing 

Meso-Cenozoic limestone sequences (e.g. Patacca et al. 2008). 

Since the Pliocene, extensional deformation affected the central Apennines and displaced the structures 

inherited by the compressive tectonics (e.g. Cavinato and De Celles 1999). This “new” tectonic phase 

resulted in NW-SE trending normal fault systems, paralleling the axis of the chain. The activity of these 

structures through the Quaternary determined the formation of several intermontane depressions, such as the 

Fucino, L’Aquila, Sulmona, Rieti, Norcia and Subequana basins (the last is the area where the present study 

has been performed) (e.g. Galadini and Messina 2004). Most of these depressions – basically half-graben 

structures bordered on the eastern flanks by normal faults – hosted a continental deposition since the 

Pliocene. 

Extensional deformation in the central Apennines is presently active, as witnessed by i) geological evidence 

of Late Pleistocene-Holocene activity along NW-SE trending normal fault systems (Fig. 1b) (e.g. Galadini 

and Galli 2000; Boncio et al. 2004); ii) geodetic (GPS) data, indicating an extension rate of about 3 mm/yr 

across the chain (Devoti et al. 2008); and iii) instrumental seismicity data, which have identified earthquake 

focal mechanisms consistent with NW-SE normal ruptures (e.g. Pondrelli et al. 2006; Bagh et al. 2007). 

The active normal faults of the central Apennines are considered as the expression at the surface of 

seismogenic sources, potentially responsible for earthquakes with magnitude up to 6.5-7. Some of these 

faults activated in historical times, causing strong seismic events, such as the 1349 (Mw 6.6), 1703 (Jan. 14; 

Mw 6.7), 1703 (Feb. 2; Mw 6.7) and 1915 (Mw 7.0) events (Working Group CPTI, 2008) (Fig. 1b). In 

particular, the April 6, 2009 earthquake occurred in a sector of the central Apennines that has been already 

struck by several moderate-to-large magnitude earthquakes in the past, as the 9 September 1349 (Mw 6.5), 2 
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February 1703 (Mw 6.7), 1461 (Mw 6.4), 1762 (Mw 5.9), 1916 (Mw 5.2) and 1958 (Mw 5.2) (Rossi et al. 

2005; Working Group CPTI 2008; Tertulliani et al. 2009). 

As for the 2009 seismic event, geological and geophysical investigations agreed in defining the mentioned 

PF as the causative fault of the earthquake. Indeed, field evidence of coseismic surface ruptures along the 

tectonic structure – detected between the villages of Collebrincioni and San Gregorio – matched with the 

intersection with the surface of the fault modelled by means of GPS (e.g. Anzidei et al. 2009) and InSAR 

coseismic data (e.g. Atzori et al. 2009). 

 

2.2. The Subequana valley 

The village of Castelvecchio Subequo is located about 40-50 km SE of L’Aquila, along the eastern flank of 

the mentioned Subequana valley, an intermontane tectonic basin adjacent to the Aterno river valley.  

The Quaternary evolution of the Subequana depression has been influenced by the activity of a normal fault 

system that borders the eastern side of the basin (Miccadei et al. 1997; Calamita et al. 2000; Falcucci et al. in 

press), i.e. the Subequana valley normal fault system (hereafter SVF) (Fig. 1c). This tectonic element affects 

the SW slopes of Mt. Urano, an anticline structure related to a NE-verging thrust that displaced Meso-

Cenozoic limestone and marls sequences pertaining to different paleogeographic domains (e.g. Miccadei et 

al. 1997; Foglio CARG 2009). The Quaternary SVF activity led to the formation of a sedimentary trap, i.e. 

the Subequana basin, where a 200-300-m-thick continental sequences deposited (e.g. Bosi and Bertini 1970; 

Falcucci et al. 2009). 

In detail, the SVF is made of two main parallel segments: an easternmost segment, detectable at the 

intermediate-upper sectors of the slopes and a westernmost branch, affecting the base of Mt. Urano (Falcucci 

et al. in press). The latter, in turn, is made of at least three sub-segments having a dextral en-echelon 

arrangement (Fig. 1c).  

The activity of the SVF during the Late Quaternary is testified by the displacement of Late Holocene 

deposits along the westernmost strand of the fault system, detected by means of geological field 

investigations and paleoseismological trenching (Falcucci et al. in press). 

 

3. Geological/structural and geomechanical investigations at Castelvecchio Subequo 

Castelvecchio Subequo raises at about 500 m a.s.l. on a small NW-SE elongated carbonate ridge, located at 

the northern termination of Mt. Urano and bounded towards E and W by stream incisions, up to 20-30 m 

deep. The eastern incision morphologically separates the ridge from the Mt. Urano SW slopes (Fig. 1d). 

At the southern portion of the CS ridge, Cretacic limestone – pertaining to the Maiolica Formation – crop out 

(Foglio CARG 2009), while the northern portion is made of fluvio-lacustrine sediments, Lower-Middle 

Pleistocene in age (Foglio CARG 2009), unconformably overlaying limestone sequences of the Maiolica and 

Scaglia Detritica Formations (Foglio CARG, 2009) (Fig. 2). 

Field observations indicate that the area of the old village is characterised by a complex structural setting. 

Indeed, the ridge is located at the northern termination of the SVF westernmost branch. Here, the fault splits 
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into two splays (Fig. 2), bounding the ridge to NE and to SW (Falcucci et al. in press). 

As visible along the northern sector of the village, the eastern splay places in contact the carbonate 

substratum, outcropping in the footwall, with the previously mentioned Early-Middle Pleistocene fluvio-

lacustrine sequence, exposed in the hanging wall. 

Moreover, within the area of CS, the westernmost SVF splay intersects further tectonic elements, about N-S 

and NNE-SSW trending, characterised by a normal-to-transtensive kinematics (Fig. 2). In particular, 

according to Falcucci et al. (in press), these structural features, responsible for the displacement of fluvial 

deposits of probable Late Pleistocene age, represent transfer faults that structurally and kinematically link the 

SVF with a further active tectonic structure, namely the Middle Aterno Valley normal fault (e.g. Galadini 

and Galli 2000). 

As depicted below, such complex active fault pattern has strongly influenced – and it is still influencing – the 

structural characteristics of the carbonate rock mass on which CS is founded, determining the present 

structural setting of the ridge. 

The activity of the westernmost SVF branch and of the mentioned transfer faults determined pervasive brittle 

deformation on the rock masses, overprinted on structural features inherited by the compressive tectonic 

phase. Here, indeed, transpressive-to-reverse shear planes, probably related to a back-thrust outcropping at 

the base of the Mt. Urano slopes, have been cross-cut by shear planes related to the SVF strand (Fig. 3). 

The deformation related to the faults resulted in sets of fractures, conjugate shear planes – paralleling the 

SVF branch and the transfer faults – that have heavily modified the primary fabric of the limestone, almost 

completely obliterating the original bedrock stratification (Fig. 4a). 

In particular, in the southernmost sector of the CS ridge, the bedrock exposed at the lowermost portion of the 

small relief is affected by near vertical, narrowly spaced shear planes and closed fractures (Fig. 4b, 2). 

In the uppermost portion of the ridge, instead, the rock mass is affected by opening mode discontinuities 

(Fig. 4c), i.e. open, planar parallel fractures and joints, that separate different slabs of limestone bedrock. In 

detail, at the uppermost sectors, these fractures i) have irregular spacing that ranges from tens of centimetres, 

along the eastern flank of the ridge, to some metres, along the western side; ii) are up-to-several-tens-of-cm 

wide (the width decreases with depth); iii) are mainly NW-SE trending, i.e. strike parallel to the SVF 

segment; and iv) display opposite dip direction, i.e. towards W and E along the eastern and western flanks of 

the ridge, respectively (Fig. 4d, e, f). 

Our observations indicate that the fractures originated from antithetic and synthetic shear planes mainly 

related to the SVF segment and, secondarily, to the above mentioned transfer faults (Fig. 4f). The 

progressive spreading of the fractures is probably due to the tendency of the rock blocks to topple towards 

the incisions bounding the CS ridge. 

In order to achieve a quantitative picture of the above described structural characteristics of the rock mass – 

in particular of the jointing condition of the ridge – we performed a geomechanical analysis along 10 

geomechanical stations corresponding to bedrock outcrops 1-to-4-m2 wide (Fig. 2).  

We proceeded with two steps: firstly, we defined the main discontinuities sets, i.e. structural features having 
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homogeneous geometrical features; secondly, we performed a detailed characterisation of each set. This 

allowed the definition of conventional geomechanical indexes, namely Jv (number of discontinuities per unit 

volume), JRC (Joint Roughness Coefficient), Undulation, RQD (Rock Quality Designation) (ISRM 1978; 

Hudson and Priest 1979; Hoek and Bray 1981) (Table 1). 

The distinction of the jointing sets has been performed by adopting a subjective criterion (ISRM 1978), 

taking into account those structural features which mainly influence the mechanical characteristics of the 

rock mass. The heavy urbanisation of the area prevented the possibility to adopt an objective criterion due to 

the lack an homogeneous distribution of significant bedrock outcrops. 

The collected data revealed a very good correlation between the different sets of joints and the main tectonic 

features affecting the CS ridge, i.e. the above mentioned SVF western segment and the transfer faults. In 

detail, we distinguished four prevailing joint domains – two mainly N-S–to–NNE-SSW trending and two 

oriented roughly NW-SE–to–NNW-SSE – having different morphological characteristics and geomechanical 

properties. Each system is here expressed with its azimuth and dip: I) N10/80, II) N15/75, III) N160/70 and 

IV) N140/75 (Table 1). 

These analyses allowed to confirm the difference in the deformation style between the lowermost and the 

uppermost portions of the ridge, as already defined by the qualitative structural observations. Indeed, as 

shown by the data collected in the different geomechanical stations analysed along the ridge, the bedrock of 

the lowermost sectors of the rock mass is characterised by poorer geomechanical characteristics – as 

suggested by the Jv and RQD indexes – (e.g. stations CS3, CS4, CS6, Table 1) than that exposed at the 

uppermost part of the ridge where, as exposed above, open fractures have been identified (e.g. stations CS5 

and CS8, Table 1). The influence that these data have in terms of evaluation of the local seismic response 

will be analysed in the discussion. 

 

4. Geophysical survey 

Campaigns of ambient seismic noise recording were carried out between July, 2009 and February, 2010 with 

the aim of obtaining information about possible local amplification of the ground motion in the area of CS. 

We have acquired twenty-two reliable ambient seismic noise recordings along the CS ridge (from the basal 

portion to the uppermost sector), in the ancient portion of the village and in the surrounding areas (Table 2, 

Figs .5).  

Microtremors were recorded through two portable seismic stations equipped with Lennartz 5s  

(www.lennartz-electronic.de) velocimetric sensors and 24-bit Reftek 130 (www.reftek.com) Digital 

Acquisition Systems (hereafter DAS). 

The ambient seismic noise measurements were carried out on exposures of limestone bedrock detected 

within the village and on pavings superposed to the bedrock. All the measurements were performed in free-

field, courtyards, squares and cellars excavated in the bedrock (Table 2; Fig. 6). 

Besides, a small temporary seismic network (made of three seismic stations) was installed from September 

17 to November 4, 2009 to collect earthquake waveforms. The stations were equipped with Episensor FBA 
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accelerometers (www.kinemetrics.com), in addition to velocimetric sensor Lennartz 5s., in order to avoid the 

saturation of digital seismic signals due to strong ground motions. The Reftek 130 DAS recorded a 

continuous dataset with rate of 100 samples per second (hereafter sps). 

The geometry of the temporary seismic network, shown in Figures 5 and 7, has been defined basing on 1) 

geologic observations, that highlighted the different degree of fracturing of the CS ridge and the Mt. Urano 

SW slope, and 2) on the ambient seismic noise campaigns which, as depicted in the following paragraph, 

showed no ground motion amplification along the Mt. Urano SW slopes and different amplification values 

between the base and the uppermost portion of the CS ridge. 

 

4.1 Ambient seismic noise: data processing and spectral ratio analysis 

The ambient seismic noise recordings were manually selected in order to remove the possible traces of signal 

affected by disturbances and artificial transients. Each measure lasted at least 30 minutes, with rate of 100 

sps. Also, the mean, the linear trend and the instrumental response were removed from all the recordings. 

The waveforms were windowed in 120-seconds-long time series. Each trace was rotated between 0° and 

175° (with steps of 5°) to investigate preferential directions of the amplifications. Then, a band-pass 

Butterworth 4 poles filter between 0.2 and 25 Hz and a cosine taper 10% were applied to every window. The 

Power Spectral Density (hereafter PSD) was calculated for the East-West (hereafter EW), North-South 

(hereafter NS) and vertical (hereafter VT) components, as described in McNamara and Buland (2004); the 

single PSD was smoothed using the Konno and Ohmachi (1998) technique (with smoothing parameter, 

b=40). In order to compute the Horizontal to Vertical Spectral Ratio  (Nogoshi and Igarashi, 1971; 

Nakamura, 1989) from the ambient noise recordings (hereafter NHVSR) for each considered azimuth, the 

ratio between the spectrum of the radial and vertical components was calculated. The resulting NHVSR was 

obtained by geometrical mean of the NHVSRs from all the selected signal windows. 

In Figures 8 and 9, we present the results of the NHVSR in terms of amplification curves and polar diagrams 

(i.e., amplitude-frequency-azimuth plots). Furthermore, Table 2 shows the synoptic description of the 

measurement sites and the values of the NHVSR main parameters. 

The measurements CVS4, CVS6, CVS7, CV26, CV30, performed along the western flank of the ridge 

(sector WF), show moderate amplifications between 1 and 8 Hz (Fig. 10 WF). In particular, CV26 and CV30 

sites, located at the base of the ridge, provided NHVSR slightly larger than 2. Moreover, it is worthy of note 

that these NHVSR are heterogeneous as regards the frequency of the peaks and the direction of the 

amplification at each site (Fig. 9).  

As for the measurements performed along the eastern flank (sector EF), the NHVSR show site amplifications 

with amplitudes smaller than 6 (Fig. 8 EF). The CVS1, CV16, CVS2 stations show neither evident single 

peaks nor a preferential direction of amplification (Fig. 9).  

Figure 8 UPR, instead, points out strong amplification of ground motion of the horizontal components 

compared to that of the vertical components derived from the measurements performed at the uppermost 

portion of the ridge (sector UPR). The site amplifications appear in the frequency range 1.5-8 Hz, with larger 
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amplitudes around 3-4 Hz. The direction of the maximum amplifications is about 70°-250° striking, i.e. 

perpendicular to the main axis of the ridge elongation. In particular, the NHVSR of CV40 and CV85 (Fig. 8 

UPR) show amplifications in directions that are different from those of the other measurement of the UPR 

sector (Fig. 9). 

Finally, the measurements performed in the surrounding areas of CS (CVS9, CV72, CV86) and along Mt. 

Urano (CV18) (sector SA) provide NHVSR that displays no site amplification, (sector SA in Fig. 8). On this 

basis, the Mt. Urano flank has been chosen as reference site and a seismic station was installed for the 

temporary network (CA02 in Fig. 5). 

 

4.2 Earthquake data: processing and spectral ratio analysis 

A dataset of earthquake waveforms was created selecting the events from the Italian Seismological 

Instrumental and Parametric Data-basE (ISIDE, http://iside.rm.ingv.it). The earthquakes were selected within 

an area of 100 km from CS, from September 17 to November 4, 2009 . We selected 903 events with 

magnitudes (Ml) comprised between 0.1 and 4.1 (Fig. 10). Some of these seismic events were localized in 

the L’Aquila and Cassino areas, NE and S of the Subequana valley, respectively.  

We followed the following procedure: firstly, we performed manual picking of the S-phase on the horizontal 

components and events with a low signal-to-noise ratio were removed. Then, we checked that no saturation 

of the seismic signal occurred in the velocimetric traces.  

This procedure resulted in 295, 234 and 308 events, recorded by CA01, CA02 and CA03 stations, 

respectively. 

The off-set, the linear trend and the instrumental response were removed from each waveform. The 

Horizontal to Vertical Spectral Ratio (hereafter HVSR) (Lermo and Chavez-Garcia 1993) and Standard 

Spectral Ratio (hereafter SSR) (Borcherdt 1970) analyses were applied to the selected dataset with the aim of 

obtaining an estimate of local seismic response. The spectral ratios were calculated on time-windows of 10 

seconds from the onset of the S phase. A band-pass Butterworth filter with 4 poles between 0.2-25 Hz and a 

10% cosine tapering were applied. Then, the FFT of the signal window was calculated and smoothed with 

Konno-Ohmachi technique (as done for the NHVSR). 

The NS and EW spectra were divided by the vertical spectrum for each seismic event in order to obtain a 

collection of HVSR. Similarly, the horizontal and vertical spectra of CA03 were divided by the horizontal 

and vertical spectra of CA02 and CA01, respectively, to obtain a collection of SSR. Moreover, the spectra of 

CA01 was divided by the spectra of CA02. Finally, a geometric mean of all events spectral ratios was 

considered to obtain HVSR and SSR at each site. 

The results obtained from the HVSR analysis are here described: as for the reference station (CA02), HVSR 

has a flat trend (Fig.11 bottom). This can be attributed to the fact that the station has been installed at the 

lowermost portion of Mt. Urano ridge where no significant amplification (e.g. due to topographic effect) are 

expected. On the contrary, the HVSR of the stations at the base (CA01) and at the top (CA03) of the ridge 

show significant amplifications. In both cases, the larger amplification occur on the EW component (Figs. 11 
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middle and 11 top, respectively). In detail, at CA01 station, the EW component is amplified in the frequency 

range 5-8 Hz with respect to the vertical component while, HVSR of CA03 station is greater than 2 between 

1 and 8 Hz, and the maximum amplification appears around 3 Hz.  

SSRs are calculated for the three components of the signal (Fig.12). The station CA03 was compared with 

CA02 and CA01 stations (Fig. 12 top and middle). The CA01 station was divided by the CA02 station (Fig. 

12 bottom).  

Our analyses indicate the lack of amplifications on the NS and vertical components for CA03 and CA01 

stations with respect to the reference station CA02. In contrast, clear amplifications emerge on the EW 

component. The SSR between CA03 and CA02 shows amplification peaks between 2 and 4 Hz on the EW 

horizontal component, with amplitudes that reach the mean value of 3. The SSR between CA01 and CA02 

shows amplifications between 5-8 Hz on the EW component. Finally, the SSR between (CA03) and (CA01) 

shows amplification at 3 Hz on the EW component. 

Figure 13 shows the waveforms of three earthquakes of magnitude 4.1, 3.5 and 2.5 recorded by the three 

stations of the network. The 2-4 Hz band-pass filtered waveforms (red) overlap the original waveforms 

(black). The CA03 station amplitudes are larger than those of the other two stations in the frequency band 

where spectral ratios are amplified. There is also a clear effect on the signal duration which is extended by a 

few tens of seconds. 

These considerations are corroborated by the analysis of the ground motion (Fig. 14) and HVSR (Fig. 15) 

related to an earthquake of Ml 2.4 on 17 July 2009 recorded during the seismic noise measurements at CVS5 

and CVS6 stations (Fig. 5). 

CVS5 was located in the uppermost portion of the ridge while CVS6 on the western flank. The three-

components records of CVS5 (red curves in Fig. 14a) and CVS6 (black curves in Fig. 14a) show that the 

waveforms for the NS and VT components are comparable. On the contrary, the CVS5 EW component has a 

persistent and larger amplitude. Figure 14b shows the spectra of the velocity waveforms shown in Figure 

16a. It is possible to note that CVS5 EW shows larger amplitude levels starting from about 2 Hz. On the 

other hand, the spectra peaks at about 1.5 Hz of both the stations are comparable.  

The HVSR analysis also show remarkable amplification differences at CVS5 and CVS6 stations (Fig. 15). 

Indeed, the CVS5 HVSR shows a polarization of the horizontal amplification around 75°N oriented (Fig. 15 

top) in the whole frequency range (i.e., 1-10 Hz); moreover, the HVSR shows remarkable amplifications at 

about 4 Hz. Conversely, CVS6 HVSR shows moderate amplifications in different directions. Finally, the 1.5 

Hz HVSR peak is oriented towards 75°N and 115°N for CVS5 and CVS6, respectively. 

These results confirm the outcomes of the analyses of the seismic events recorded by the temporary seismic 

network (CA03, CA02 and CA01 stations). 

 

5. Comparison with synthetic spectra 

In order to further test the reliability of CA02 as a reference station, that is, the absence of significant site 

amplifications, we compared the ground motion recorded at such station during the two above mentioned 
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events (Ml 3.5 and Ml 4.1) with simulated signals. The standard point-source stochastic approach proposed 

by Boore (1983; 2003) was adopted to generate synthetic seismograms. We used the classical omega-square 

model to describe the earthquake source and the path effect is parameterized by simple functions that 

account for geometrical spreading and anelastic attenuation. The aim is to asses the expected ground motion 

at CS considering a simple theoretical model of the earthquake source and wave propagation processes.  

The source-to-site distances are 50 and 46 km for the larger and smaller event, respectively. In order to 

account for the frequency-dependent attenuation of the ground motion along the travel path we used the 

results of Bindi et al. (2009) in terms of quality factor and geometrical spreading. The authors inverted the 

records from 12 events of the L’Aquila sequence recorded by the Italian strong-motion network (RAN, Rete 

Accelerometrica Nazionale), in order to separate the contribution of path, source and site effects to the total 

ground motion. The input parameters adopted in this study are reported in Table 3.  

A key parameter of the model, often affected by large uncertainties, is the stress parameter (∆σ), controlling 

the high-frequency energy of the radiated spectra. We performed the simulations considering three values of 

∆σ (i.e., 50, 100 and 150 bar), selected to roughly include all the values obtained by Bindi et al. (2009) for 

their dataset. Finally, the high-frequency decay parameters (κ) was set to 0.015s which is a reasonable value 

for hard-rock sites (Margaris and Boore 1998; Bindi et al. 2004). 

Figure 16 shows the comparison between recorded and simulated acceleration Fourier Amplitude Spectra 

(FAS). The simulated FAS represents the root mean square (RMS) of the spectra obtained for 40 realizations 

of the stochastic process. The increasing amplitudes of the RMS spectra correspond to increasing ∆σ values.  

Overall, the simulated spectra are in good agreement with the observed ones at station CA02, for both 

events. A better fit seems to be provided using a ∆σ=100 bar for the larger event and ∆σ=150 bar for the 

smaller one. A slight underestimation of the observed spectra is visible around 2 Hz for both events, possibly 

related to small site amplification effects at the reference station. When considering CA03 station, only few 

tens of meters distant, the larger amplitude of the observed spectra compared to the simulated ones becomes 

evident between 2 and 6 Hz. In particular, the simulated FAS (considering the best fit stress parameters) 

underestimates the observed EW spectra of about a factor 4 at 3 Hz, for both events. 

This comparison support the use of CA02 as a reference station since the recorded spectra are well fitted by 

those simulated with a simple model for a generic hard-rock site. 

 

6. Discussion  

The results of ambient seismic noise measurements plus data derived from three temporary seismic stations 

have shown an evident heterogeneity of the amplifications within the village. In particular, amplifications of 

the horizontal components have been found along the CS ridge, with local variations of the frequency bands 

and amplitudes, ranging between 1 and 15 Hz. In the surrounding areas, instead, no ground motion 

amplification has been detected. 

The NHVSR analyses indicate that the largest amplifications of the horizontal components of the ground 

motion occur at the uppermost portion of the ridge, perpendicularly to its major elongation axis. 
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The HVSR and SSR, calculated by means of weak motions recordings confirm the amplification detected by 

NHVSRs, with amplifications between 1 and 7 Hz and amplitudes larger than roughly 3. Moreover, such 

amplifications produce the increase of the duration of seismic shaking of some tens of seconds. 

As for the cause of the ground motion amplification, topographic effect is generally considered as the main 

factor that influences local site effects along small and narrow mountain ridges (e.g. Géli and Bard 1988; 

Massa et al. 2010). It must be noted that topographic effects involve the whole relief and is due to the 

fundamental frequency of  resonance of ridges(Faccioli et al. 2002). Furthermore, they are characterised by 

an increase of the amplification amplitude from the base to the top of the ridge. These two seismological 

features  are clearly visible and definitive in many cases, e.g. in the case of Castelnuovo village, severely 

damaged by the April 6, 2009 earthquake (Gallipoli et al. 2009). Nevertheless, the marked heterogeneities 

concerning frequency, amplitude and polarization in the local seismic response of the CS ridge suggest that 

other causes - analysed below -  have to be invoked to better explain at least part of the observed ground 

motion amplification.  

The results of our geological/structural investigations, coupled with quantitative geomechanical analyses of 

the jointing condition of the rock mass, have shown that the limestone bedrock of the CS ridge is affected by 

different deformation style between the lowermost and the uppermost sectors. 

In detail, our analyses revealed that the lowermost portion of the rock mass is characterised by pervasive 

deformation, with vertical, narrowly spaced shear planes and closed fractures, related to the main tectonic 

features that affect the CS area, i.e. the above mentioned westernmost segment of the SVF and transfer 

faults. This deformation resulted in a limestone bedrock characterised by “very poor” geomechanical 

properties, as testified by the indexes achieved by quantitative analyses of the rock mass conditions 

performed at measurement stations CS3, CS4 and CS6 (Table1) . 

Conversely, the uppermost portions of the ridge is mainly characterised by rock slabs – i.e. “block-type” 

deformation – separated by moderately spaced joints and fractures (geomechanical stations CS5 and CS8). 

Also, differently from the lowermost sectors, the joints sets paralleling the NW-SE trending branch of the 

SVF are open of up to some tens of centimetres at the very top of the ridge. 

This “picture” allows to hypothesise that the heterogeneity of the local seismic response is related to the 

depicted structural characteristics of the CS ridge. Indeed, despite a low rock quality at the lowermost 

portions of the rock mass, no significant ground motion amplification has been here identified. On the other 

hand, ground motion amplifications strongly increase at the uppermost portion of the ridge and displays a 

NE-SW orientation, i.e. striking perpendicularly to the major axis of the ridge and to the attitude of the open 

fractures, as  the seismic waves determine the oscillation of the different rock slabs perpendicularly to the 

main attitude of the open fractures (Fig. 17a).  

Hence, all the above highlight that where the fractures are not open no amplification (or very low) occurs and 

no evident correlation with the trend of the structural features is seen (Fig. 17 b,c,d,e). Therefore, the 

described structural setting, coupled with the morphological characteristics of the relief, that have favoured 

the spreading of the fractures, can be considered as one of the main factors that contributes to the ground 
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motion amplification occurring in the uppermost sector of the CS relief.  

This interpretation is also confirmed by the data obtained by the temporary seismic network. Indeed, despite 

the pervasive and intense deformation of the limestone bedrock (as testified by the results obtained at 

geomechanical station CS1), ground motion amplification has not been detected along the Mt. Urano slopes 

(i.e. the reference site; station CA02) (Fig. 17e, CS1-CV18), affected by closed joints; conversely, station 

CA03, installed at the top of the ridge, showed clear evidence of ground motion amplification perpendicular 

to the trend of the open fractures (Fig.17a, CS5-CVS3). 

 

7. Concluding remarks 

The analysis of the intensity distribution related to the April 6, 2009 L’Aquila seismic event (Mw 6.3) 

revealed that Castelvecchio Subequo (CS) has been affected by an “anomalous”, relatively high degree of 

damage (i.e. Is 7 MCS scale). The anomaly lies in the fact that the village is about 40 km far from the 

earthquake source and it is nearby other inhabited centres to which considerably lower intensities, i.e. Is 5-6, 

have been attributed. Moreover, the damage was irregularly distributed within CS, being mainly 

concentrated in the uppermost portion of the old village. 

We performed geophysical investigations, combined with geological/structural and geomechanical field 

surveys, that revealed the occurrence of site effects at CS. 

In particular, ground motion amplification have been identified at the uppermost portion of the ridge where 

structural and geomechanical analyses revealed that the limestone bedrock is affected by open joints and 

fractures related to the main structural features that affect the area, i.e. the westernmost fault segment of the 

SVF and transfer faults linking the SVF and the Middle Aterno Valley Fault. In particular, the trend of 

ground motion amplification is parallel to the opening direction of the fractures. Conversely, in other 

portions of the ridge – in particular, along the lowermost sectors – although the bedrock is affected by 

intense fracturing and the quality of the rock mass is poor, the joints are not opened and no significant 

ground motion amplification has been seen. 

In the whole, these observations suggest that, besides the age and the typology of the buildings, the damage 

related to the 2009 earthquake at CS can also related to the local geological characteristics of the area and, in 

particular, to the style of deformation of the limestone rocks of the CS ridge. 

Finally, from an applied point of view, the results obtained indicate that the local geological complexities 

represent an element of fragility of the CS territory that must be taken into thorough account to better plan 

the actions necessary to reduce the seismic risk. 
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Tables 

 

Table 1 – Geomechanical characterisation of the rock masses (ISRM 1978; Hudsnon and Priest 1979; Hoek 

and Bray 1981). As for the joint set codes, see text. 

Station Elevation 

(m a.s.l.) 

Geomorphological 

features 

Joint set Geomechanical features 

CS1 478 Bottom of the slope III Types rock mass: highly fractured-Spacing: extremely 

close (<20 mm) Opening: very close-Filling: W1-Jv:

50-JRC: 8-10-Undulation: segmented-polished (III)- 

RQD: <25% very poor 

CS2 503 top of the hill II - IV Types rock mass: highly fractured-Spacing: extremely 

close (<20 mm) Opening: close- Filling: W1-Jv: 38-

40-JRC: 8-10 Undulation: segmented-polished (III)-

RQD: <25% very poor 

CS3 495 Md-slope/top of the 

hill 

IV Types rock mass: highly fractured-Spacing: extremely 

close (<20 mm) Opening: close-Filling: W1-Jv: 45-

JRC: 8-10 Undulation: segmented-polished (III)-

RQD: <25% very poor 

CS4 475 Mid-slope I - IV Types rock mass: highly fractured-Spacing: extremely 

close (<20 mm) Opening: partially open-close-Filling: 

W1 and W2-Jv: 42-40-JRC: 8-10 Undulation: 

segmented-polished (III)-RQD: <25% very poor 

CS5 483 top of the hill I - IV Types rock mass: slabs- Spacing: moderate  (200 to 

600 mm) Opening: extremely wide-Jv:8-5-JRC: 2-4-

Undulation: smooth-flat (VII)-RQD: 75-90% good 

CS6 470 Bottom of the slope I - IV Types rock mass: highly fractured-Spacing: extremely 

close (<20 mm) Opening: open-partially open- Filling: 

W1 and W2-Jv: 47-42-JRC: 8-10 Undulation: 

segmented-polished (III)-RQD: <25% very poor 

CS7 495 Bottom of the slope II - IV Types rock mass: highly fractured-Spacing: extremely 

close (<20 mm) Opening: partially open-close-

Filling:W1-Jv:42-JRC: 8-10 Undulation: segmented-

polished (III)-RQD: <25% very poor 

CS8 485 top of the hill I - IV Types rock mass: slabs- Spacing: moderate  (200 to 

600 mm) Opening: extremely wide-Jv: 7-10-JRC: 2-4-

Undulation: smooth-flat (VII) RQD: 75-90% good 

CS9 528 top of the hill I - III Types rock mass: highly fractured-Spacing: extremely 
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close (<20 mm) Opening: partially open-close-

Filling:W1-Jv: 40-JRC: 8-10 Undulation: segmented-

polished (III)-RQD: <25% very poor 

CS10 500 Mid-slope II - III Types rock mass: highly fractured-Spacing: extremely 

close (<20 mm) Opening: partially open-close- 

(III)- Filling: W1-Jv: 38-42-JRC: 8-10- Undulation: 

segmented-smooth (III) RQD: <25% very poor 

 

 

Table 2 – Description of the measurement sites. Code = site name; Amplif = presence of amplification; 

Amplitude: maximum amplitude of HVSR related to Main Direction; Freq = frequency of HVSR maximum 

amplitude; Main Direction = degree from the North of the clear direction of amplification; Noise = noise 

measurement; Earthquake = number of the earthquakes recorded at the site; Ground = type of ground 

Code Amplif Amplitude Freq Main Direction Noise Earthquake Ground
CA01 Yes     295 rock 
CA02 No     234 rock 
CA03 Yes     308 rock 
CVS1 Yes 4.37 6.49 35 x  rock 
CVS2 Yes 5.95 3.98 60 x  rock 
CVS3 Yes 11.38 6.19 75 x  paved 
CVS4 Yes 3.81 1.69 145 x  rock 
CVS5 Yes 5.61 3.88 75 x 1 paved 
CVS6 Yes 4.58 21.54 85 x 1 paved 
CVS7 Yes 2.94 1.30 65 x  asphalt 
CVS8 No    x  asphalt 
CVS9 No    x  rock 
CV16 Yes 4.85 5.35 35 x  rock 
CV17 No    x  rock 
CV18 No    x  rock 
CV21 No    x  asphalt 
CV26 No    x  rock 
CV29 Yes 3.89 4.00 140 x  soil 
CV30 No    x  rock 
CV31 Yes 4.43 3.13 55 x  rock 
CV40 Yes 3.93 3.50 95 x  rock 
CV72 No    x  soil 
CV83 Yes 7.16 3.87 70 x  paved 
CV84 Yes 15.77 5.42 70 x  rock 
CV85 Yes 4.71 3.85 95 x  rock 
 

 

 

 

 

 



 
21

Table 3 – Parameters used in the simulations 

parameter value 

shear-wave velocity (Vs) * 3.2 km/s 

Density (ρ) * 2.8 gm/cm3 

geometrical spreading *  1/r 

quality factor * Q=59f 0.56 

κ  0.015s 

stress parameter 50 - 100 -150 bar  

* from Bindi et al. 2009  

 

 

Figure captions 

Figure 1. a) Intensity (Mercalli-Cancani-Sieberg scale; b) distribution of the 2009 L’Aquila earthquake; b) 

Seismotectonic framework of the central Apennines (modified after Galadini et al., 2009). Faults: MVEF, 

Mt. Vettore; NFS, Norcia; LMF, Laga Mts.; UAVFS, upper Aterno Valley; CIFS, Campo Imperatore; CF-

OPF, Campo Felice-Ovindoli-Pezza; MAVFS, middle Aterno Valley; SVF, Subequana Valley; MMF, Mt. 

Morrone; FF, Fucino; MPF, Maiella-Porrara; ACF, Aremogna-Cinquemiglia; USFS, upper Sangro Valley; 

red rectangle, the area analysed in the present work; c) shaded relief of the Subequana Valley; red rectangle, 

the area under investigation; fault traces, according to Falcucci et al. in press; d) panoramic view of the 

Castelvecchio Subequo limestone ridge; partly collapsed edifices at the uppermost portion of the ridge, inset. 

 

Figure 2. Geological scheme and cross-sections of the area of Castelvecchio Subequo; rose diagrams (insets) 

on which the azimuth and the relative abundance of the structural discontinuities affecting the limestone 

bedrock are shown. Each diagram plots the measurements performed within 1-to-4 squared metre of bedrock 

exposure.  

 

Figure 3. Reverse fault planes (black dashed lines), affecting the carbonate bedrock, that are crosscut by 

extensional shear planes (white dotted lines) – a close-up image is shown in inset. 

 

Figure 4. a) Panoramic view of the southern termination of the Castelvecchio Subequo ridge; b) close-up 

photograph showing narrowly spaced shear planes and closed fractures affecting the limestone bedrock at the 

lowermost portion of the ridge, c) close-up image of the uppermost portion of the ridge, where opening mode 

discontinuities affect the carbonate bedrock; details of the open fractures (indicated by white triangles) 

detected along the western (d) and eastern (e) flanks of the ridge; white arrows indicate the direction of 

toppling of the bedrock slabs; f) block diagram showing the main sets of fractures affecting the 

Castelvecchio Subequo ridge. 
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Fig. 5 Ambient seismic noise stations (red triangles) and temporary seismic network (blue triangles) in CS 

and in its hinterland. CS buildings are represented with light green  polygons. Background: Carta Tecnica 

Regionale (1:5000) Regione Abruzzo. CS buildings are represented with light green  polygons. Blue 

numbers are the elevation a.m.s.l.. Green numbers are elevation relative to height contours.  

 

Fig. 6 Examples of measurements location inside CS. CVS4) cellar excavated directly in the rock; CV85) 

courtyard; CVS5and CV84) squares. 

 

Fig. 7 Panoramic view of the temporary seismic network (red triangles). CA03 is located in the historical 

part of CS,  in the foundation floor of a building (bottom on the left); CA02 is located on the slope of Urano 

mountain in the natural cave; CA01 is located at the base of the relief in a cellar inside the rock outcrop.  

 

Fig. 8 Summary of results about NHVSR analysis. WF: Western Flank; UPR: Upper Portion of the Ridge; 

EF: Eastern Flank; SA: Surrounding Areas. Green lines represent the 36 directions from 0° to 175°. Thick 

blue line represents the amplitudes in the maximum amplification direction. Thin blue lines represent 

standard deviation of the amplitudes in the maximum amplification direction. Station code, frequency (Freq 

HV) and azimuth (Az) of maximum amplitude are marked in the title of each NHVSR plot. 

 

Fig. 9 Summary of results about NHVSR analysis. The map shows the polar plot of NHVSR lines at each 

measurements site (black code). Green polygons: CS buildings. Red lines: geologic faults. Blue numbers: 

elevation a.m.s.l.. Green numbers: elevation relative to height contours. Polar plot of NHVSR curves: outer 

black numbers mark degrees from the North; color bar marks the NHVSR amplitudes. Background: Carta 

Tecnica Regionale (1:5000) Regione Abruzzo.  

 

Fig. 10 Map of the 903 epicentres resulting from earthquakes data set selected on 9 November 2009. Red 

triangle marks the position of the CS temporary seismic network. Image taken from http://iside.rm.ingv.it 

 

Fig. 11 Summary of results about earthquake HVSR analysis. NS/UP: HVSR between North-South 

component and the vertical one. EW/UP: HVSR between East-West component and the vertical one. Thick 

blue line: HVSR geometrical average; thin blue lines: HVSR standard deviation. Black titles: station code, 

HVSR type, number of seismic events used for HVSR analysis. 

 

Fig. 12 Summary of results about earthquake SSR analysis. EW/EW: SSR between East-West components. 

NS/NS: SSR between North-South components. UP/UP: SSR between vertical components.Thick blue line: 

SSR geometrical average; thin blue lines: SSR standard deviation. Black titles: analysed station code on 

reference station code, SSR type, number of seismic events used for SSR analysis. 
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Fig. 13 East-West (EW) waveforms of three earthquakes recorded at CA03, CA01, CA02 stations. Black 

titles: origin time and magnitude of the seismic event. RIDGE: station at the ridge of the relief; BASE: 

station at the base of the relief; REF: reference station on the slope of the Urano mountain. Black line: 

original waveform. Red line: band-pass filtered waveform from 2 to 4 Hz.  

 

Fig. 14 Waveforms (a) and Spectra (b) of a earthquake recorded at CVS5 and CVS6 noise measurement 

stations. Black title in a): origin time and magnitude of the seismic event. Black lines: CVS6 waveforms and 

spectra. Red lines: CVS5 waveforms and spectra. EW: East-West component; NS: North-South component; 

UP: vertical component. VEL: velocity. 

 

Fig. 15 HVSR of the earthquake in Fig. 16. Top: HVSR at CVS5 station. Bottom: HVSR at CVS6 station. 

Black titles on the left: station code, frequency (Freq HV) and azimuth (Az) of maximum HVSR amplitude. 

Red lines: HVSR 75°N direction. Blue line: HVSR 115°N direction. Polar plot of NHVSR curves: outer 

black numbers mark degrees from the North; inner black numbers represent the NHVSR frequency (Hz); 

color bar marks the NHVSR amplitudes.  

 

Fig. 16 Comparison between observed (gray and black lines) and simulated (red lines) acceleration Fourier 

Amplitude Spectra. The increasing amplitudes of the simulated FAS correspond to increasing ∆σ values (50, 

100 and 150 bars). Simulated FAS have been high-pass filtered at 0.3 Hz. The moment magnitude and 

hypocentral distance used in the simulations are also reported.  

 

Fig. 17 Structural discontinuities vs amplification directions. Left panels: rose diagrams on which the 

azimuth and the relative abundance of the structural discontinuities affecting the limestone bedrock; each 

diagram plots the measurements performed within one squared metre of bedrock exposure. Right panels: 

polar plot of NHVSR curves; outer black numbers mark degrees from the North; color bar marks the 

NHVSR amplitudes. 
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