1,445 research outputs found
Luminous Supernovae
Supernovae (SNe), the luminous explosions of stars, were observed since
antiquity, with typical peak luminosity not exceeding 1.2x10^{43} erg/s
(absolute magnitude >-19.5 mag). It is only in the last dozen years that
numerous examples of SNe that are substantially super-luminous (>7x10^{43}
erg/s; <-21 mag absolute) were well-documented. Reviewing the accumulated
evidence, we define three broad classes of super-luminous SN events (SLSNe).
Hydrogen-rich events (SLSN-II) radiate photons diffusing out from thick
hydrogen layers where they have been deposited by strong shocks, and often show
signs of interaction with circumstellar material. SLSN-R, a rare class of
hydrogen-poor events, are powered by very large amounts of radioactive 56Ni and
arguably result from explosions of very massive stars due to the pair
instability. A third, distinct group of hydrogen-poor events emits photons from
rapidly-expanding hydrogen-poor material distributed over large radii, and are
not powered by radioactivity (SLSN-I). These may be the hydrogen-poor analogs
of SLSN-II.Comment: This manuscript has been accepted for publication in Science (to
appear August 24). This version has not undergone final editing. Please refer
to the complete version of record at http://www.sciencemag.org/. The
manuscript may not be reproduced or used in any manner that does not fall
within the fair use provisions of the Copyright Act without the prior,
written permission of AAA
WISeREP - An Interactive Supernova Data Repository
We have entered an era of massive data sets in astronomy. In particular, the
number of supernova (SN) discoveries and classifications has substantially
increased over the years from few tens to thousands per year. It is no longer
the case that observations of a few prototypical events encapsulate most
spectroscopic information about SNe, motivating the development of modern tools
to collect, archive, organize and distribute spectra in general, and SN spectra
in particular. For this reason we have developed the Weizmann Interactive
Supernova data REPository - WISeREP - an SQL-based database (DB) with an
interactive web-based graphical interface. The system serves as an archive of
high quality SN spectra, including both historical (legacy) data as well as
data that is accumulated by ongoing modern programs. The archive provides
information about objects, their spectra, and related meta-data. Utilizing
interactive plots, we provide a graphical interface to visualize data, perform
line identification of the major relevant species, determine object redshifts,
classify SNe and measure expansion velocities. Guest users may view and
download spectra or other data that have been placed in the public domain.
Registered users may also view and download data that are proprietary to
specific programs with which they are associated. The DB currently holds >8000
spectra, of which >5000 are public; the latter include published spectra from
the Palomar Transient Factory, all of the SUSPECT archive, the
Caltech-Core-Collapse Program, the CfA SN spectra archive and published spectra
from the UC Berkeley SNDB repository. It offers an efficient and convenient way
to archive data and share it with colleagues, and we expect that data stored in
this way will be easy to access, increasing its visibility, usefulness and
scientific impact.Comment: To be published in PASP. WISeREP:
http://www.weizmann.ac.il/astrophysics/wiserep
The luminous late-time emission of the type Ic supernova iPTF15dtg - evidence for powering from a magnetar?
iPTF15dtg is a Type Ic supernova (SN) showing a broad light curve around
maximum light, consistent with massive ejecta if we assume a
radioactive-powering scenario. We study the late-time light curve of iPTF15dtg,
which turned out to be extraordinarily luminous for a stripped-envelope (SE)
SN. We compare the observed light curves to those of other SE SNe and also with
models for the Co decay. We analyze and compare the spectra to nebular
spectra of other SE SNe. We build a bolometric light curve and fit it with
different models, including powering by radioactivity, magnetar powering, as
well as a combination of the two. Between 150 d and 750 d past explosion,
iPTF15dtg's luminosity declined by merely two magnitudes instead of the six
magnitudes expected from Co decay. This is the first
spectroscopically-regular SE SN showing this behavior. The model with both
radioactivity and magnetar powering provides the best fit to the light curve
and appears to be the more realistic powering mechanism. An alternative
mechanism might be CSM interaction. However, the spectra of iPTF15dtg are very
similar to those of other SE SNe, and do not show signs of strong CSM
interaction. iPTF15dtg is the first spectroscopically-regular SE SN whose light
curve displays such clear signs of a magnetar contributing to the powering of
the late time light curve. Given this result, the mass of the ejecta needs to
be revised to a lower value, and therefore the progenitor mass could be
significantly lower than the previously estimated 35 .Comment: 9 pages, 8 figures, accepted for publication in Astronomy and
Astrophysic
Preliminary Results from the Caltech Core-Collapse Project (CCCP)
We present preliminary results from the Caltech Core-Collapse Project (CCCP),
a large observational program focused on the study of core-collapse SNe.
Uniform, high-quality NIR and optical photometry and multi-epoch optical
spectroscopy have been obtained using the 200'' Hale and robotic 60''
telescopes at Palomar, for a sample of 50 nearby core-collapse SNe. The
combination of both well-sampled optical light curves and multi-epoch
spectroscopy will enable spectroscopically and photometrically based subtype
definitions to be disentangled from each other. Multi-epoch spectroscopy is
crucial to identify transition events that evolve among subtypes with time. The
CCCP SN sample includes every core-collapse SN discovered between July 2004 and
September 2005 that was visible from Palomar, found shortly (< 30 days) after
explosion (based on available pre-explosion photometry), and closer than ~120
Mpc. This complete sample allows, for the first time, a study of core-collapse
SNe as a population, rather than as individual events. Here, we present the
full CCCP SN sample and show exemplary data collected. We analyze available
data for the first ~1/3 of the sample and determine the subtypes of 13 SNe II
based on both light curve shapes and spectroscopy. We discuss the relative SN
II subtype fractions in the context of associating SN subtypes with specific
progenitor stars.Comment: To appear in the proceedings of the meeting "The Multicoloured
Landscape of Compact Objects and their Explosive Origins", Cefalu, Italy,
June 2006, to be published by AIP, Eds. L. Burderi et a
SN2007ax : An Extremely Faint Type Ia Supernova
We present multi-band photometric and optical spectroscopic observations of
SN2007ax, the faintest and reddest Type Ia supernova (SNIa) yet observed. With
M_B = -15.9 and (B-V)max = 1.2, this SN is over half a magnitude fainter at
maximum light than any other SNIa. Similar to subluminous SN2005ke, SN2007ax
also appears to show excess in UV emission at late time. Traditionally,
Delta-m_15(B) has been used to parameterize the decline rate for SNeIa.
However, the B-band transition from fast to slow decline occurs sooner than 15
days for faint SNeIa. Therefore we suggest that a more physically motivated
parameter, the time of intersection of the two slopes, be used instead. Only by
explaining the faintest (and the brightest) supernovae, we can thoroughly
understand the physics of thermonuclear explosions. We suggest that future
surveys should carefully design their cadence, depth, pointings and follow-up
to find an unbiased sample of extremely faint members of this subclass of faint
SNeIa.Comment: Accepted for publication in ApJ
The very energetic, broad-lined Type Ic supernova 2010ah (PTF10bzf) in the context of GRB/SNe
SN 2010ah, a very broad-lined Type Ic supernova (SN) discovered by the Palomar Transient Factory, was interesting because of its relatively high luminosity and the high velocity of the absorption lines, which was comparable to that of gamma-ray burst (GRB)/SNe, suggesting a high explosion kinetic energy. However, no GRB was detected in association with the SN. Here, the properties of SN 2010ah are determined with higher accuracy than previous studies through modelling. New Subaru telescope photometry is presented. A bolometric light curve is constructed taking advantage of the spectral similarity with SN 1998bw. Radiation transport tools are used to reproduce the spectra and the light curve. The results thus obtained regarding ejecta mass, composition and kinetic energy are then used to compute a synthetic light curve. This is in reasonable agreement with the early bolometric light curve of SN 2010ah, but a high abundance of 56Ni at high velocity is required to reproduce the early rise, while a dense inner core must be used to reproduce the slow decline at late phases. The high-velocity 56Ni cannot have been located on our line of sight, which may be indirect evidence for an off-axis, aspherical explosion. The main properties of SN 2010ah are: ejected mass Mej ≈ 3 M⊙; kinetic energy Ekin ≈ 1052 erg, M(56Ni) ≈ 0.25 M⊙. The mass located at v ≳ 0.1 c is ∼0.2 M⊙. Although these values, in particular the Ekin, are quite large for a Type Ic SN, they are all smaller (especially Mej) than those typical of GRB/SNe. This confirms the tendency for these quantities to correlate, and suggests that there are minimum requirements for a GRB/SN, which SN 2010ah may not meet although it comes quite close. Depending on whether a neutron star or a black hole was formed following core collapse, SN 2010ah was the explosion of a CO core of ∼5 to 6 M⊙, pointing to a progenitor mass of ∼24–28 M⊙
- …
