1,445 research outputs found

    Luminous Supernovae

    Full text link
    Supernovae (SNe), the luminous explosions of stars, were observed since antiquity, with typical peak luminosity not exceeding 1.2x10^{43} erg/s (absolute magnitude >-19.5 mag). It is only in the last dozen years that numerous examples of SNe that are substantially super-luminous (>7x10^{43} erg/s; <-21 mag absolute) were well-documented. Reviewing the accumulated evidence, we define three broad classes of super-luminous SN events (SLSNe). Hydrogen-rich events (SLSN-II) radiate photons diffusing out from thick hydrogen layers where they have been deposited by strong shocks, and often show signs of interaction with circumstellar material. SLSN-R, a rare class of hydrogen-poor events, are powered by very large amounts of radioactive 56Ni and arguably result from explosions of very massive stars due to the pair instability. A third, distinct group of hydrogen-poor events emits photons from rapidly-expanding hydrogen-poor material distributed over large radii, and are not powered by radioactivity (SLSN-I). These may be the hydrogen-poor analogs of SLSN-II.Comment: This manuscript has been accepted for publication in Science (to appear August 24). This version has not undergone final editing. Please refer to the complete version of record at http://www.sciencemag.org/. The manuscript may not be reproduced or used in any manner that does not fall within the fair use provisions of the Copyright Act without the prior, written permission of AAA

    WISeREP - An Interactive Supernova Data Repository

    Full text link
    We have entered an era of massive data sets in astronomy. In particular, the number of supernova (SN) discoveries and classifications has substantially increased over the years from few tens to thousands per year. It is no longer the case that observations of a few prototypical events encapsulate most spectroscopic information about SNe, motivating the development of modern tools to collect, archive, organize and distribute spectra in general, and SN spectra in particular. For this reason we have developed the Weizmann Interactive Supernova data REPository - WISeREP - an SQL-based database (DB) with an interactive web-based graphical interface. The system serves as an archive of high quality SN spectra, including both historical (legacy) data as well as data that is accumulated by ongoing modern programs. The archive provides information about objects, their spectra, and related meta-data. Utilizing interactive plots, we provide a graphical interface to visualize data, perform line identification of the major relevant species, determine object redshifts, classify SNe and measure expansion velocities. Guest users may view and download spectra or other data that have been placed in the public domain. Registered users may also view and download data that are proprietary to specific programs with which they are associated. The DB currently holds >8000 spectra, of which >5000 are public; the latter include published spectra from the Palomar Transient Factory, all of the SUSPECT archive, the Caltech-Core-Collapse Program, the CfA SN spectra archive and published spectra from the UC Berkeley SNDB repository. It offers an efficient and convenient way to archive data and share it with colleagues, and we expect that data stored in this way will be easy to access, increasing its visibility, usefulness and scientific impact.Comment: To be published in PASP. WISeREP: http://www.weizmann.ac.il/astrophysics/wiserep

    The luminous late-time emission of the type Ic supernova iPTF15dtg - evidence for powering from a magnetar?

    Get PDF
    iPTF15dtg is a Type Ic supernova (SN) showing a broad light curve around maximum light, consistent with massive ejecta if we assume a radioactive-powering scenario. We study the late-time light curve of iPTF15dtg, which turned out to be extraordinarily luminous for a stripped-envelope (SE) SN. We compare the observed light curves to those of other SE SNe and also with models for the 56^{56}Co decay. We analyze and compare the spectra to nebular spectra of other SE SNe. We build a bolometric light curve and fit it with different models, including powering by radioactivity, magnetar powering, as well as a combination of the two. Between 150 d and 750 d past explosion, iPTF15dtg's luminosity declined by merely two magnitudes instead of the six magnitudes expected from 56^{56}Co decay. This is the first spectroscopically-regular SE SN showing this behavior. The model with both radioactivity and magnetar powering provides the best fit to the light curve and appears to be the more realistic powering mechanism. An alternative mechanism might be CSM interaction. However, the spectra of iPTF15dtg are very similar to those of other SE SNe, and do not show signs of strong CSM interaction. iPTF15dtg is the first spectroscopically-regular SE SN whose light curve displays such clear signs of a magnetar contributing to the powering of the late time light curve. Given this result, the mass of the ejecta needs to be revised to a lower value, and therefore the progenitor mass could be significantly lower than the previously estimated >>35 MM_{\odot}.Comment: 9 pages, 8 figures, accepted for publication in Astronomy and Astrophysic

    Preliminary Results from the Caltech Core-Collapse Project (CCCP)

    Get PDF
    We present preliminary results from the Caltech Core-Collapse Project (CCCP), a large observational program focused on the study of core-collapse SNe. Uniform, high-quality NIR and optical photometry and multi-epoch optical spectroscopy have been obtained using the 200'' Hale and robotic 60'' telescopes at Palomar, for a sample of 50 nearby core-collapse SNe. The combination of both well-sampled optical light curves and multi-epoch spectroscopy will enable spectroscopically and photometrically based subtype definitions to be disentangled from each other. Multi-epoch spectroscopy is crucial to identify transition events that evolve among subtypes with time. The CCCP SN sample includes every core-collapse SN discovered between July 2004 and September 2005 that was visible from Palomar, found shortly (< 30 days) after explosion (based on available pre-explosion photometry), and closer than ~120 Mpc. This complete sample allows, for the first time, a study of core-collapse SNe as a population, rather than as individual events. Here, we present the full CCCP SN sample and show exemplary data collected. We analyze available data for the first ~1/3 of the sample and determine the subtypes of 13 SNe II based on both light curve shapes and spectroscopy. We discuss the relative SN II subtype fractions in the context of associating SN subtypes with specific progenitor stars.Comment: To appear in the proceedings of the meeting "The Multicoloured Landscape of Compact Objects and their Explosive Origins", Cefalu, Italy, June 2006, to be published by AIP, Eds. L. Burderi et a

    SN2007ax : An Extremely Faint Type Ia Supernova

    Get PDF
    We present multi-band photometric and optical spectroscopic observations of SN2007ax, the faintest and reddest Type Ia supernova (SNIa) yet observed. With M_B = -15.9 and (B-V)max = 1.2, this SN is over half a magnitude fainter at maximum light than any other SNIa. Similar to subluminous SN2005ke, SN2007ax also appears to show excess in UV emission at late time. Traditionally, Delta-m_15(B) has been used to parameterize the decline rate for SNeIa. However, the B-band transition from fast to slow decline occurs sooner than 15 days for faint SNeIa. Therefore we suggest that a more physically motivated parameter, the time of intersection of the two slopes, be used instead. Only by explaining the faintest (and the brightest) supernovae, we can thoroughly understand the physics of thermonuclear explosions. We suggest that future surveys should carefully design their cadence, depth, pointings and follow-up to find an unbiased sample of extremely faint members of this subclass of faint SNeIa.Comment: Accepted for publication in ApJ

    The very energetic, broad-lined Type Ic supernova 2010ah (PTF10bzf) in the context of GRB/SNe

    Get PDF
    SN 2010ah, a very broad-lined Type Ic supernova (SN) discovered by the Palomar Transient Factory, was interesting because of its relatively high luminosity and the high velocity of the absorption lines, which was comparable to that of gamma-ray burst (GRB)/SNe, suggesting a high explosion kinetic energy. However, no GRB was detected in association with the SN. Here, the properties of SN 2010ah are determined with higher accuracy than previous studies through modelling. New Subaru telescope photometry is presented. A bolometric light curve is constructed taking advantage of the spectral similarity with SN 1998bw. Radiation transport tools are used to reproduce the spectra and the light curve. The results thus obtained regarding ejecta mass, composition and kinetic energy are then used to compute a synthetic light curve. This is in reasonable agreement with the early bolometric light curve of SN 2010ah, but a high abundance of 56Ni at high velocity is required to reproduce the early rise, while a dense inner core must be used to reproduce the slow decline at late phases. The high-velocity 56Ni cannot have been located on our line of sight, which may be indirect evidence for an off-axis, aspherical explosion. The main properties of SN 2010ah are: ejected mass Mej ≈ 3 M⊙; kinetic energy Ekin ≈ 1052 erg, M(56Ni) ≈ 0.25 M⊙. The mass located at v ≳ 0.1 c is ∼0.2 M⊙. Although these values, in particular the Ekin, are quite large for a Type Ic SN, they are all smaller (especially Mej) than those typical of GRB/SNe. This confirms the tendency for these quantities to correlate, and suggests that there are minimum requirements for a GRB/SN, which SN 2010ah may not meet although it comes quite close. Depending on whether a neutron star or a black hole was formed following core collapse, SN 2010ah was the explosion of a CO core of ∼5 to 6 M⊙, pointing to a progenitor mass of ∼24–28 M⊙
    corecore