8,435 research outputs found

    Neutron--Antineutron Oscillations at the Surface of Nuclei

    Get PDF
    We discuss some aspects of possible neutron--antineutron oscillations in nuclei. The phenomenon occurs mostly at the surface of nuclei, and hence {\sl i)} is not very sensitive to medium corrections and {\sl ii)} makes use of the antinucleon-nucleus interaction in a region probed by experiments at CERN.Comment: Contr. Oak Ridge Workshop on Workshop on Baryon Instability, Latex, 4 pages, comments to [email protected]

    The luminous late-time emission of the type Ic supernova iPTF15dtg - evidence for powering from a magnetar?

    Get PDF
    iPTF15dtg is a Type Ic supernova (SN) showing a broad light curve around maximum light, consistent with massive ejecta if we assume a radioactive-powering scenario. We study the late-time light curve of iPTF15dtg, which turned out to be extraordinarily luminous for a stripped-envelope (SE) SN. We compare the observed light curves to those of other SE SNe and also with models for the 56^{56}Co decay. We analyze and compare the spectra to nebular spectra of other SE SNe. We build a bolometric light curve and fit it with different models, including powering by radioactivity, magnetar powering, as well as a combination of the two. Between 150 d and 750 d past explosion, iPTF15dtg's luminosity declined by merely two magnitudes instead of the six magnitudes expected from 56^{56}Co decay. This is the first spectroscopically-regular SE SN showing this behavior. The model with both radioactivity and magnetar powering provides the best fit to the light curve and appears to be the more realistic powering mechanism. An alternative mechanism might be CSM interaction. However, the spectra of iPTF15dtg are very similar to those of other SE SNe, and do not show signs of strong CSM interaction. iPTF15dtg is the first spectroscopically-regular SE SN whose light curve displays such clear signs of a magnetar contributing to the powering of the late time light curve. Given this result, the mass of the ejecta needs to be revised to a lower value, and therefore the progenitor mass could be significantly lower than the previously estimated >>35 M⊙M_{\odot}.Comment: 9 pages, 8 figures, accepted for publication in Astronomy and Astrophysic

    Optical image of a cometary nucleus: 1980 flyby of Comet Encke

    Get PDF
    The feasibility was investigated of obtaining optical images of a cometary nucleus via a flyby of Comet Encke. A physical model of the dust cloud surrounding the nucleus was developed by using available physical data and theoretical knowledge of cometary physics. Using this model and a Mie scattering code, calculations were made of the absolute surface brightness of the dust in the line of sight of the on-board camera and the relative surface brightness of the dust compared to the nucleus. The brightness was calculated as a function of heliocentric distance and for different phase angles (sun-comet-spacecraft angle)

    Mass along the Line of Sight to the Gravitational Lens B1608+656: Galaxy Groups and Implications for H_0

    Get PDF
    We report the discovery of four groups of galaxies along the line of sight to the B1608+656 gravitational lens system. One group is at the redshift of the primary lensing galaxy (z = 0.631) and appears to have a low mass, with eight spectroscopically confirmed members and an estimated velocity dispersion of 150 ± 60 km s^(-1). The three other groups are in the foreground of the lens. These groups contain ~10 confirmed members each and are located at redshifts of 0.265, 0.426, and 0.52. Two of the three additional groups are centered roughly on the lens system, while the third is centered ~1' south of the lens. We investigate the effect of each of the four groups on the gravitational lensing potential of the B1608+656 system, with a particular focus on the implications for the value of H_0 derived from this system. We find that each group provides an external convergence of ~0.005-0.060, depending on the assumptions made in the calculation. For the B1608+656 system, the stellar velocity dispersion of the lensing galaxy has been measured, thus breaking the mass sheet degeneracy due to the group that is physically associated with the lens. The effect of the other groups along the line of sight can be folded into the overall uncertainties due to large-scale structure (LSS) along the line of sight. Because B1608+656 appears to lie along an overdense line of sight, the LSS will cause the measurement of H_0 to be biased high for this system. This effect could be 5% or greater
    • …
    corecore