14 research outputs found

    A proteomic approach based on peptide affinity chromatography, 2-dimensional electrophoresis and mass spectrometry to identify multiprotein complexes interacting with membrane-bound receptors

    Get PDF
    There is accumulating evidence that membrane-bound receptors interact with many intracellular proteins. Multiprotein complexes associated with ionotropic receptors have been extensively characterized, but the identification of proteins interacting with G protein-coupled receptors (GPCRs) has so far only been achieved in a piecemeal fashion, focusing on one or two protein species. We describe a method based on peptide affinity chromatography, two-dimensional electrophoresis, mass spectrometry and immunoblotting to identify the components of multiprotein complexes interacting directly or indirectly with intracellular domains of GPCRs or, more generally, any other membrane-bound receptor. Using this global approach, we have characterized multiprotein complexes that bind to the carboxy-terminal tail of the 5-hydroxytryptamine type 2C receptor and are important for its subcellular localization in CNS cells (BĂ©camel et al., EMBO J., 21(10): 2332, 2002)

    Stereochemical control in the preparation of a-amino N-methylthiazolidine masked aldehydes used for peptide aldehydes synthesis

    No full text
    International audienceChiral N-methyl thiazolidines masked α-amino aldehydes are used for solid phase peptide aldehyde elongation. Contrary to N-Boc-protected α-amino aldehydes, N-trityl protection secures the chiral integrity of the incoming aldehyde chiral C1′ carbon atom during condensation of the amino aldehydes with Image-cysteinyl residues. The Ac-Tyr-Val-Ala-Asp-H caspase inhibitor was prepared on a solid support starting from the N-trityl-amino thiazolidine masked aspartinal as a validation of this process

    Difference in mass analysis using labeled lysines (DIMAL-K): a new, efficient proteomic quantification method applied to the analysis of astrocytic secretomes

    No full text
    Here we describe an original strategy for unbiased quantification of protein expression called difference in mass analysis using labeled lysine (K) (DIMAL-K). DIMAL-K is based on the differential predigestion labeling of lysine residues in complex protein mixtures. The method is relevant for proteomic analysis by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Protein labeling on lysine residues uses two closely related chemical reagents, S-methyl thioacetimidate and S-methyl thiopropionimidate. Using protein standards, we demonstrated that 1) the chemical labeling was quantitative, specific, and rapid; 2) the differentially labeled proteins co-migrated on two-dimensional gels; and 3) the identification by mass fingerprinting and the relative quantification of the proteins were possible from a single MALDI-TOF mass spectrum. The power of the method was tested by comparing and quantifying the secretion of proteins in normal and proinflammatory astrocytic secretomes (20 microg). We showed that DIMAL-K was more sensitive and accurate than densitometric image analysis and allowed the detection and quantification of novel proteins

    PACAP type I receptor transactivation is essential for IGF-1 receptor signalling and antiapoptotic activity in neurons.: IGF-1 transactivates PACAP type I receptors

    No full text
    Insulin-like growth factor-1 (IGF-1) and pituitary adenylyl cyclase activating polypeptide (PACAP) are both potent neurotrophic and antiapoptotic factors, which exert their effects via phosphorylation cascades initiated by tyrosine kinase and G-protein-coupled receptors, respectively. Here, we have adapted a recently described phosphoproteomic approach to neuronal cultures to characterize the phosphoproteomes generated by these neurotrophic factors. Unexpectedly, IGF-1 and PACAP increased the phosphorylation state of a common set of proteins in neurons. Using PACAP type 1 receptor (PAC1R) null mice, we showed that IGF-1 transactivated PAC1Rs constitutively associated with IGF-1 receptors. This effect was mediated by Src family kinases, which induced PAC1R phosphorylation on tyrosine residues. PAC1R transactivation was responsible for a large fraction of the IGF-1-associated phosphoproteome and played a critical role in the antiapoptotic activity of IGF-1. Hence, in contrast to the general opinion that the trophic activity of IGF-1 is solely mediated by tyrosine kinase receptor-associated signalling, we show that it involves a more complex signalling network dependent on the PAC1 Gs-protein-coupled receptor in neurons

    Synaptic multiprotein complexes associated with5-HT(2C) receptors: a proteomic approach

    No full text
    Membrane-bound receptors such as tyrosine kinases and ionotropic receptors are associated with large protein networks structured by protein–protein interactions involving multidomain proteins. Although these networks have emerged as a general mechanism of cellular signalling, much less is known about the protein complexes associated with G-protein-coupled receptors (GPCRs). Using a proteomic approach based on peptide affinity chromatography followed by mass spectrometry and immunoblotting, we have identified 15 proteins that interact with the C- terminal tail of the 5-hydroxytryptamine 2C (5-HT(2C)) receptor, a GPCR. These proteins include several synaptic multidomain proteins containing one or several PDZ domains (PSD95 and the proteins of the tripartite complex Veli3–CASK–Mint1), proteins of the actin/spectrin cytoskeleton and signalling proteins. Coimmunoprecipitation experiments showed that 5-HT(2C) receptors interact with PSD95 and the Veli3–CASK–Mint1 complex in vivo. Electron microscopy also indicated a synaptic enrichment of Veli3 and 5-HT(2C) receptors and their colocalization in microvilli of choroidal cells. These results indicate that the 5-HT(2C) receptor is associated with protein networks that are important for its synaptic localization and its coupling to the signalling machinery

    First analysis of the proteome in two nematomorph species, Paragordius tricuspidatus (Chordodidae) and Spinochordodes tellinii (Spinochordodidae)

    No full text
    International audienceThe proteome of most parasite species is currently unknown. Hairworms (Nematomorpha), 300 species distributed around the world, are parasitic in arthropods (mainly terrestrial species) when juveniles, but they are free-living in aquatic environments when adult. Most aspects of their systematics and biology are currently unknown. The aim of this paper was (i) to report a novel and reproducible protocol for the analysis of the proteome of hairworms using two-dimensional gel electrophoresis (2-DGE) and mass spectrometry (matrix laser desorption ionization-time of flight mass spectrometry (MALDI-TOF)) and (ii) to determine the level of proteomic divergence between two sympatric but taxonomically unrelated nematomorph species in the adult stage, Paragordius tricuspidatus Dufour (Nematomorpha, Gordiidae) and Spinochordodes tellinii Camerano (Nematomorpha, Gordiidae). In total, 689 protein spots were observed for P. tricuspidatus, 575 for S. tellinii. Only 36.2% spots were shared between the two species. Quantitative analysis of the proteins which are common to both parasite species reveals substantial differences in the pattern of protein expression. These results suggest a rapid evolutionary divergence between these two nematomorph families. Also, to test the value of our MALDI-TOF protocol, we used Actin-2 (Act-2), a protein highly conserved in the course of evolution. Peptide mass fingerprint (PMF) data obtained for Act-2 of P. tricuspidatus and S. tellinii suggest a very high homology with Act-2 of different worms species belonging to the Bilateria phylum (Annelida and Nematoda) and more specifically to Lumbricus terrestris (Annelida, Lumbricidae) and Caenorhabditis elegans (Nematoda, Rhabditidae). We discuss our results in relationship with current ideas concerning the use of proteomics in systematic
    corecore