56 research outputs found

    Identification of Ink Cartridges of Industrial Printer

    Get PDF
    Tato práce se zabývá identifikací inkoustových cartridgí průmyslovou tiskárnou TSjet. Jsou zde představeny základní způsoby identifikace, které se v dnešní době běžně používají. Dále je zde popsána sběrnice 1-Wire® a rozhraní USART. Ve druhé části se práce zabývá vhodnými zabezpečovacími algoritmy pro šifrování dat uložených na identifikačním čipu. V praktické části je popsán návrh systému pro identifikaci inkoustové cartridge. V závěru práce jsou shrnuty výsledky testování návrhu v praxi a hodnocení bezpečnosti celého sytému.This thesis deals with the identification of ink cartridges by the industrial printer TSjet. There are described the basic methods of identification of ink cartridges that are commonly used today. There is also described 1-Wire® bus and USART interface. In the second part the thesis deals with suitable security algorithms for data security stored on the identification chip. The practical part describes the design of the system for identification of the ink cartridge. The conclusion of the thesis summarizes the results of design testing in practice and the safety evaluation of the whole system.

    The binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital evolution

    Full text link
    Using our photometric observations taken between 1996 and 2013 and other published data, we derived properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\deg} and -83{\deg}, respectively, with the mean radius of the uncertainty area of 4{\deg}, and the orbital period is 16.1508 +/- 0.0002 h (all quoted uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +/- 0.20 deg/yr^2, i.e., consistent with zero. The drift is substantially lower than predicted by the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J., Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the theory of an equilibrium between BYORP and tidal torques for synchronous binary asteroids as proposed by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D. [2011]. ApJ Letters, 736, L19). Based on the assumption of equilibrium, we derived a ratio of the quality factor and tidal Love number of Q/k = 2.4 x 10^5 uncertain by a factor of five. We also derived a product of the rigidity and quality factor of mu Q = 1.3 x 10^7 Pa using the theory that assumes an elastic response of the asteroid material to the tidal forces. This very low value indicates that the primary of 1996 FG3 is a 'rubble pile', and it also calls for a re-thinking of the tidal energy dissipation in close asteroid binary systems.Comment: Many changes based on referees comment

    Combining asteroid models derived by lightcurve inversion with asteroidal occultation silhouettes

    Full text link
    Asteroid sizes can be directly measured by observing occultations of stars by asteroids. When there are enough observations across the path of the shadow, the asteroid's projected silhouette can be reconstructed. Asteroid shape models derived from photometry by the lightcurve inversion method enable us to predict the orientation of an asteroid for the time of occultation. By scaling the shape model to fit the occultation chords, we can determine the asteroid size with a relative accuracy of typically ~ 10%. We combine shape and spin state models of 44 asteroids (14 of them are new or updated models) with the available occultation data to derive asteroid effective diameters. In many cases, occultations allow us to reject one of two possible pole solutions that were derived from photometry. We show that by combining results obtained from lightcurve inversion with occultation timings, we can obtain unique physical models of asteroids.Comment: 33 pages, 45 figures, 4 tables, accepted for publication in Icaru

    Spin vector and shape of (6070) Rheinland and their implications

    Full text link
    Main belt asteroids (6070) Rheinland and (54827) 2001NQ8 belong to a small population of couples of bodies which reside on very similar heliocentric orbits. Vokrouhlicky & Nesvorny (2008, AJ 136, 280) promoted a term "asteroid pairs", pointing out their common origin within the past tens to hundreds of ky. Previous attempts to reconstruct the initial configuration of Rheinland and 2001NQ8 at the time of their separation have led to the prediction that Rheinland's rotation should be retrograde. Here we report extensive photometric observations of this asteroid and use the lightcurve inversion technique to directly determine its rotation state and shape. We confirm the retrograde sense of rotation of Rheinland, with obliquity value constrained to be >= 140 deg. The ecliptic longitude of the pole position is not well constrained as yet. The asymmetric behavior of Rheinland's lightcurve reflects a sharp, near-planar edge in our convex shape representation of this asteroid. Our calibrated observations in the red filter also allow us to determine HR=13.68±0.05H_R = 13.68\pm 0.05 and G=0.31±0.05G = 0.31\pm 0.05 values of the H-G system. With the characteristic color index VR=0.49±0.05V-R = 0.49\pm 0.05 for the S-type asteroids, we thus obtain H=14.17±0.07H = 14.17\pm 0.07 for the absolute magnitude of (6070) Rheinland. This a significantly larger value than previously obtained from analysis of the astrometric survey observations. We next use the obliquity constraint for Rheinland to eliminate some degree of uncertainty in the past propagation of its orbit. This is because the sign of the past secular change of its semimajor axis due to the Yarkovsky effect is now constrained. Determination of the rotation state of the secondary component, asteroid (54827) 2001NQ8, is the key element in further constraining the age of the pair and its formation process.Comment: Published in AJ, 28 pages, 4 figures, 2 table

    Asteroid candidates for mass determination

    No full text
    The first 9511 numbered asteroids are studied in terms of their mutual closest approaches and encounter velocities during the period from November 6, 1967, to September 13, 2023. Several large asteroids (diameter 200km200 \mathrm{km} and above) were (will be) encountered by smaller counterparts within a distance of 0.0200AU0.0200 \mathrm{AU}. Thus, they are possible candidates for mass determination by the astrometrical method. Similarly, the search for effective perturbers is extended to even smaller asteroids for the much closer separation distance of 0.0020AU0.0020 \mathrm{AU} and below. Only the simplified method for evaluation of observable effects on a perturbed body is used. Asteroid masses alone are not computed here. But a stronger criterion to reveal pairs for this purpose in comparison to some specially devoted papers should compensate for the difference and act as a reliable test. The best candidates for mass determination at present are asteroids (1), (2), (4), (10), (11), (24), (52) and (65). This list may be extended by at least (29) in the next 5 years and by many others in the next two decades. Several other strong perturbers from the last three decades are not included in the list, while there is still only a limited number of (or no) precise and reliable observations of perturbed asteroids before a close encounter. It seems that a perturbation by (10) is at least as effective as that by (2) and could be included in asteroid orbit determination in the future. Except for their bulk density determinations (knowing the size), the masses of perturbers could occasionally be used to improve the precision of the computed orbit for perturbed large-numbered and unnumbered asteroids as well

    Accuracy of calibrated data from the SDSS moving object catalog, absolute magnitudes, and probable lightcurves for several asteroids

    No full text
    It would seem that the calibrated observations obtained by the Sloan Digital Sky Survey (SDSS) by themselves would be, at best, marginally useful for the secure determination of asteroid rotation lightcurves, mostly due to the scarcity of data for a particular object in a given apparition as well as because of the sometimes low photometric quality of the SDSS data. Despite these shortcomings, it was decided to see if the SDSS data could be used to help find the lightcurve parameters of at least some asteroids. Observations of ten asteroids obtained by the SDSS are compared here with lightcurves obtained by asteroid photometric stations using dense data sets. Three asteroids observed during the same apparition as the SDSS observations served to determine the accuracy of the SDSS data. Except for occasional outliers identified on the basis of deviating color indices, the accuracy of the observations was found to be about 0.03 mag in the V band on average, which is a generally accepted level of quality for most asteroid photometry.
In addition to the ten asteroids with known lightcurves, another 54 asteroids without known lightcurves, but with more than 20 observations by SDSS, were also examined to derive their absolute magnitudes (H) and plausible composite lightcurves. Lightcurve analyses of (12104) Chesley, (32257) 2000 OW52, (39132) 2000 WU58, (156751) 2002 XL92, (219686) 2001 WE37, 1992 WW6, and 2007 EP39 are presented. The asteroids studied in this paper were found to be mostly fainter than predicted from the H values given by the Minor Planet Center in its Orbit Database. The difference between the H values slightly correlates with the lightcurve amplitude
    corecore