6 research outputs found

    Identificación de suelos supresivos a Meloidogyne spp. en parcelas de producción comercial de hortalizas bajo plástico

    Get PDF
    Dos invernaderos de producción ecológica localizados en Tarragona (A) y Amposta (B) fueron  monitorizados desde 10/2010 hasta 7/2013 para determinar la fluctuación de la población de Meloidogyne spp., el porcentaje de huevos parasitados por hongos y las especies fúngicas implicadas. Al inicio del estudio el porcentaje de parasitismo era del 14 y 60% en A y B, respectivamente; y las raíces mostraban niveles bajos de agallamiento para el tipo de cultivo y densidad de población en pretrasplante, sugiriendo que podrían ser suelos supresivos a la enfermedad.Postprint (published version

    Microbial community changes induced by Managed Aquifer Recharge activities: linking hydrogeological and biological processes

    Get PDF
    Managed Aquifer Recharge (MAR) is a technique used worldwide to increase the availability of water resources. We study how MAR modifies microbial ecosystems and its implications for enhancing biodegradation processes to eventually improve groundwater quality. We compare soil and groundwater samples taken from a MAR facility located in NE Spain during recharge (with the facility operating continuously for several months) and after 4 months of no recharge. The study demonstrates a strong correlation between soil and water microbial prints with respect to sampling location along the mapped infiltration path. In particular, managed recharge practices disrupt groundwater ecosystems by modifying diversity indices and the composition of microbial communities, indicating that infiltration favors the growth of certain populations. Analysis of the genetic profiles showed the presence of nine different bacterial phyla in the facility, revealing high biological diversity at the highest taxonomic range. In fact, the microbial population patterns under recharge conditions agree with the intermediate disturbance hypothesis (IDH). Moreover, DNA sequence analysis of excised denaturing gradient gel electrophoresis (DGGE) band patterns revealed the existence of indicator species linked to MAR, most notably Dehalogenimonas sp., Nitrospira sp. and Vogesella sp.. Our real facility multidisciplinary study (hydrological, geochemical and microbial), involving soil and groundwater samples, indicates that MAR is a naturally based, passive and efficient technique with broad implications for the biodegradation of pollutants dissolved in water.Peer ReviewedPostprint (published version

    Are dominant microbial sub-surface communities affected by water quality and soil characteristics?

    Get PDF
    Subsurface microorganisms must deal with quite extreme environmental conditions. The lack of light, oxygen, and potentially nutrients are the main environmental stresses faced by subsurface microbial communities. Likewise, environmental disruptions providing an unbalanced positive input of nutrients force microorganisms to adapt to varying conditions, visible in the changes in microbial community diversity. In order to test microbial community adaptation to environmental changes, we performed a study in a surface Managed Aquifer Recharge facility, consisting of a settlement basin (two-day residence time) and an infiltration pond. Data on groundwater hydrochemistry, soil texture, and microbial characterization was compiled from surface water, groundwater, and soil samples at two distinct recharge operation conditions. Multivariate statistics by means of Principal Component Analysis (PCA) was the technique used to map the relevant dimensionality reduced combinations of input variables that properly describe the system behavior. The methodology selected allows including variables of different nature and displaying very different range values. Strong differences in the microbial assemblage under recharge conditions were found, coupled to hydrochemistry and grain-size distribution variables. Also, some microbial groups displayed correlations with either carbon or nitrogen cycles, especially showing abundant populations of denitrifying bacteria in groundwater. A significant correlation was found between Methylotenera mobilis and the concentrations of NO3 and SO4, and also between Vogesella indigofera and the presence of DOC in the infiltrating water. Also, microbial communities present at the bottom of the pond correlated with representative descriptors of soil grain size distribution.Peer ReviewedPostprint (author's final draft

    Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse

    No full text
    The fluctuation of Meloidogyne population density and the percentage of fungal egg parasitism were determined from July 2011 to July 2013 in two commercial organic vegetable production sites (M10.23 and M10.55) in plastic greenhouses, located in northeastern Spain, in order to know the level of soil suppressiveness. Fungal parasites were identified by molecular methods. In parallel, pot tests characterized the level of soil suppressiveness and the fungal species growing from the eggs. In addition, the egg parasitic ability of 10 fungal isolates per site was also assessed. The genetic profiles of fungal and bacterial populations from M10.23 and M10.55 soils were obtained by Denaturing Gradient Gel Electrophoresis (DGGE), and compared with a non-suppressive soil (M10.33). In M10.23, Meloidogyne population in soil decreased progressively throughout the rotation zucchini, tomato, and radish or spinach. The percentage of egg parasitism was 54.7% in zucchini crop, the only one in which eggs were detected. Pochonia chlamydosporia was the only fungal species isolated. In M10.55, nematode densities peaked at the end of the spring-summer crops (tomato, zucchini, and cucumber), but disease severity was lower than expected (0.2–6.3). The percentage of fungal egg parasitism ranged from 3 to 84.5% in these crops. The results in pot tests confirmed the suppressiveness of the M10.23 and M10.55 soils against Meloidogyne. The number of eggs per plant and the reproduction factor of the population were reduced (P < 0.05) in both non-sterilized soils compared to the sterilized ones after one nematode generation. P. chlamydosporia was the only fungus isolated from Meloidogyne eggs. In in vitro tests, P. chlamydosporia isolates were able to parasitize Meloidogyne eggs from 50 to 97% irrespective of the site. DGGE fingerprints revealed a high diversity in the microbial populations analyzed. Furthermore, both bacterial and fungal genetic patterns differentiated suppressive from non-suppressive soils, but the former showed a higher degree of similarity between both suppressive soils than the later

    Identificación de suelos supresivos a Meloidogyne spp. en parcelas de producción comercial de hortalizas bajo plástico

    No full text
    Dos invernaderos de producción ecológica localizados en Tarragona (A) y Amposta (B) fueron  monitorizados desde 10/2010 hasta 7/2013 para determinar la fluctuación de la población de Meloidogyne spp., el porcentaje de huevos parasitados por hongos y las especies fúngicas implicadas. Al inicio del estudio el porcentaje de parasitismo era del 14 y 60% en A y B, respectivamente; y las raíces mostraban niveles bajos de agallamiento para el tipo de cultivo y densidad de población en pretrasplante, sugiriendo que podrían ser suelos supresivos a la enfermedad

    Microbial community changes induced by Managed Aquifer Recharge activities: linking hydrogeological and biological processes

    No full text
    Managed Aquifer Recharge (MAR) is a technique used worldwide to increase the availability of water resources. We study how MAR modifies microbial ecosystems and its implications for enhancing biodegradation processes to eventually improve groundwater quality. We compare soil and groundwater samples taken from a MAR facility located in NE Spain during recharge (with the facility operating continuously for several months) and after 4 months of no recharge. The study demonstrates a strong correlation between soil and water microbial prints with respect to sampling location along the mapped infiltration path. In particular, managed recharge practices disrupt groundwater ecosystems by modifying diversity indices and the composition of microbial communities, indicating that infiltration favors the growth of certain populations. Analysis of the genetic profiles showed the presence of nine different bacterial phyla in the facility, revealing high biological diversity at the highest taxonomic range. In fact, the microbial population patterns under recharge conditions agree with the intermediate disturbance hypothesis (IDH). Moreover, DNA sequence analysis of excised denaturing gradient gel electrophoresis (DGGE) band patterns revealed the existence of indicator species linked to MAR, most notably Dehalogenimonas sp., Nitrospira sp. and Vogesella sp.. Our real facility multidisciplinary study (hydrological, geochemical and microbial), involving soil and groundwater samples, indicates that MAR is a naturally based, passive and efficient technique with broad implications for the biodegradation of pollutants dissolved in water.Peer Reviewe
    corecore