407 research outputs found

    Setiburst: A Robotic, Commensal, Realtime Multi-Science Backend For The Arecibo Telescope

    Get PDF
    Radio astronomy has traditionally depended on observatories allocating time to observers for exclusive use of their telescopes. The disadvantage of this scheme is that the data thus collected is rarely used for other astronomy applications, and in many cases, is unsuitable. For example, properly calibrated pulsar search data can, with some reduction, be used for spectral line surveys. A backend that supports plugging in multiple applications to a telescope to perform commensal data analysis will vastly increase the science throughput of the facility. In this paper, we presen

    A 4-8 GHz Galactic Center Search for Periodic Technosignatures

    Full text link
    Radio searches for extraterrestrial intelligence have mainly targeted the discovery of narrowband continuous-wave beacons and artificially dispersed broadband bursts. Periodic pulse trains, in comparison to the above technosignature morphologies, offer an energetically efficient means of interstellar transmission. A rotating beacon at the Galactic Center (GC), in particular, would be highly advantageous for galaxy-wide communications. Here, we present blipss, a CPU-based open-source software that uses a fast folding algorithm (FFA) to uncover channel-wide periodic signals in radio dynamic spectra. Running blipss on 4.5 hours of 4-8 GHz data gathered with the Robert C. Byrd Green Bank Telescope, we searched the central 6' of our Galaxy for kHz-wide signals with periods between 11-100 s and duty cycles (δ\delta) between 10-50%. Our searches, to our knowledge, constitute the first FFA exploration for periodic alien technosignatures. We report a non-detection of channel-wide periodic signals in our data. Thus, we constrain the abundance of 4-8 GHz extraterrestrial transmitters of kHz-wide periodic pulsed signals to fewer than one in about 600,000 stars at the GC above a 7σ\sigma equivalent isotropic radiated power of ≈2×1018\approx 2 \times 10^{18} W at δ≃10%\delta \simeq 10\%. From an astrophysics standpoint, blipss, with its utilization of a per-channel FFA, can enable the discovery of signals with exotic radio frequency sweeps departing from the standard cold plasma dispersion law.Comment: 20 pages, 11 figures, published in AJ, in press (http://seti.berkeley.edu/blipss/
    • …
    corecore