24 research outputs found

    Proinflammatorische und prothrombotische Effekte doppelsträngiger DNA am vaskulären Endothel

    Get PDF

    The Endothelial Tyrosine Phosphatase SHP-1 Plays an Important Role for Vascular Haemostasis in TNF alpha-Induced Inflammation In Vivo

    Get PDF
    Introduction. Inflammation and endothelium-derived superoxides are important pathomechanisms in atherothrombotic diseases. We could previously show that the tyrosine phosphatase SHP-1 acts as a negative regulator in endothelial superoxide production. In this study we investigated the influence of SHP-1 on platelet-endothelium interaction and arterial thrombosis in TNF alpha-induced endothelial inflammation in vivo. Methods. Arteriolar thrombosis and platelet rolling in vivo were investigated in C57BL/6 mice using intravital microscopy in the dorsal skinfold chamber microcirculation model. Results. Inhibition of SHP-1 by the specific pharmacological inhibitor sodium stibogluconate did not significantly enhance platelet-endothelium interaction in vivo under physiological conditions but led to an augmented fraction of rolling platelets in TNF alpha-induced systemic inflammation. Accordingly, ferric-chloride-induced arteriolar thrombus formation, which was already increased by SHP-1 inhibition, was further enhanced in the setting of TNF alpha-induced inflammation. Platelet aggregation in vitro as well as ex vivo was not influenced by SHP-1-inhibition. In cultured endothelial cells, sodium stibogluconate increased TNF alpha-induced surface expression of p-selectin and von Willebrand factor. Additionally, TNF alpha increased SHP-1 activity and protein expression. Conclusions. The endothelial tyrosine phosphatase SHP-1 plays an important role for vascular hemostasis in vivo, which is crucial in TNF alpha-induced endothelial inflammation where it may serve as an autoinhibitory molecule to prevent excess inflammatory response and thrombus formation

    Hepatitis C Virus Induced Endothelial Inflammatory Response Depends on the Functional Expression of TNF alpha Receptor Subtype 2

    Get PDF
    In hepatitis C virus (HCV) infection, morbidity and mortality often result from extrahepatic disease manifestations. We provide evidence for a role of receptors of the innate immune system in virally induced inflammation of the endothelium in vitro and in vivo. Corresponding to the in vitro finding of an HCV-dependent induction of proinflammatory mediators in endothelial cells, mice treated with poly (I: C) exhibit a significant reduction in leukocyte rolling velocity, an increase in leukocyte adhesion to the vessel wall and an increased extravasation of leukocytes. HCV directly promotes activation, adhesion and infiltration of inflammatory cells into the vessel wall by activation of endothelial viral receptors. Poly (I: C) induces the expression of TLR3 in vivo and hereby allows for amplification of all of the aforementioned responses upon viral infection. Proinflammatory effects of viral RNA are specifically mediated by TLR3 and significantly enhanced by tumor necrosis factor alpha (TNFa). HCV-RNA induces the endothelial expression of TNFa and TNFa receptor subtype 2 and we provide evidence that leucocyte adhesion and transmigration in response to activation of viral RNA receptors seem to depend on expression of functional TNFR2. Our results demonstrate that endothelial cells actively participate in immune mediated vascular inflammation caused by viral infections

    Double-stranded DNA induces a prothrombotic phenotype in the vascular endothelium

    Get PDF
    Double-stranded DNA (dsDNA) constitutes a potent activator of innate immunity, given its ability to bind intracellular pattern recognition receptors during viral infections or sterile tissue damage. While effects of dsDNA in immune cells have been extensively studied, dsDNA signalling and its pathophysiological implications in non-immune cells, such as the vascular endothelium, remain poorly understood. The aim of this study was to characterize prothrombotic effects of dsDNA in vascular endothelial cells. Transfection of cultured human endothelial cells with the synthetic dsDNA poly(dA:dT) induced upregulation of the prothrombotic molecules tissue factor and PAI-1, resulting in accelerated blood clotting in vitro, which was partly dependent on RIG-I signalling. Prothrombotic effects were also observed upon transfection of endothelial cells with hepatitis B virus DNA-containing immunoprecipitates as well human genomic DNA. In addition, dsDNA led to surface expression of von Willebrand factor resulting in increased platelet-endothelium-interactions under flow. Eventually, intrascrotal injection of dsDNA resulted in accelerated thrombus formation upon light/dye-induced endothelial injury in mouse cremaster arterioles and venules in vivo. In conclusion, we show that viral or endogenous dsDNA induces a prothrombotic phenotype in the vascular endothelium. These findings represent a novel link between pathogen-and danger-associated patterns within innate immunity and thrombosis

    Accumulation of mutations in antibody and CD8 T cell epitopes in a B cell depleted lymphoma patient with chronic SARS-CoV-2 infection

    Get PDF
    Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design

    Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation

    Get PDF
    Leukocyte-released antimicrobial peptides contribute to pathogen elimination and activation of the immune system. Their role in thrombosis is incompletely understood. Here we show that the cathelicidin LL-37 is abundant in thrombi from patients with acute myocardial infarction. Its mouse homologue, CRAMP, is present in mouse arterial thrombi following vascular injury, and derives mainly from circulating neutrophils. Absence of hematopoietic CRAMP in bone marrow chimeric mice reduces platelet recruitment and thrombus formation. Both LL-37 and CRAMP induce platelet activation in vitro by involving glycoprotein VI receptor with downstream signaling through protein tyrosine kinases Src/Syk and phospholipase C. In addition to acute thrombosis, LL-37/CRAMP-dependent platelet activation fosters platelet-neutrophil interactions in other inflammatory conditions by modulating the recruitment and extravasation of neutrophils into tissues. Absence of CRAMP abrogates acid-induced lung injury, a mouse pneumonia model that is dependent on platelet-neutrophil interactions. We suggest that LL-37/CRAMP represents an important mediator of platelet activation and thrombo-inflammation

    The Endothelial Tyrosine Phosphatase SHP-1 Plays an Important Role for Vascular Haemostasis in TNF alpha-Induced Inflammation In Vivo

    Get PDF
    Introduction. Inflammation and endothelium-derived superoxides are important pathomechanisms in atherothrombotic diseases. We could previously show that the tyrosine phosphatase SHP-1 acts as a negative regulator in endothelial superoxide production. In this study we investigated the influence of SHP-1 on platelet-endothelium interaction and arterial thrombosis in TNF alpha-induced endothelial inflammation in vivo. Methods. Arteriolar thrombosis and platelet rolling in vivo were investigated in C57BL/6 mice using intravital microscopy in the dorsal skinfold chamber microcirculation model. Results. Inhibition of SHP-1 by the specific pharmacological inhibitor sodium stibogluconate did not significantly enhance platelet-endothelium interaction in vivo under physiological conditions but led to an augmented fraction of rolling platelets in TNF alpha-induced systemic inflammation. Accordingly, ferric-chloride-induced arteriolar thrombus formation, which was already increased by SHP-1 inhibition, was further enhanced in the setting of TNF alpha-induced inflammation. Platelet aggregation in vitro as well as ex vivo was not influenced by SHP-1-inhibition. In cultured endothelial cells, sodium stibogluconate increased TNF alpha-induced surface expression of p-selectin and von Willebrand factor. Additionally, TNF alpha increased SHP-1 activity and protein expression. Conclusions. The endothelial tyrosine phosphatase SHP-1 plays an important role for vascular hemostasis in vivo, which is crucial in TNF alpha-induced endothelial inflammation where it may serve as an autoinhibitory molecule to prevent excess inflammatory response and thrombus formation

    The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α) protein levels in endothelial cells under hypoxia.

    Get PDF
    The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS) formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia.SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn) increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin). SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS) further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A) resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132) returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS) formation, as measured by oxidation of H2-DCF and DHE fluorescence.SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases
    corecore