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Abstract

In hepatitis C virus (HCV) infection, morbidity and mortality often result from

extrahepatic disease manifestations. We provide evidence for a role of receptors of

the innate immune system in virally induced inflammation of the endothelium in vitro

and in vivo. Corresponding to the in vitro finding of an HCV-dependent induction of

proinflammatory mediators in endothelial cells, mice treated with poly (I:C) exhibit a

significant reduction in leukocyte rolling velocity, an increase in leukocyte adhesion

to the vessel wall and an increased extravasation of leukocytes. HCV directly

promotes activation, adhesion and infiltration of inflammatory cells into the vessel

wall by activation of endothelial viral receptors. Poly (I:C) induces the expression of

TLR3 in vivo and hereby allows for amplification of all of the aforementioned

responses upon viral infection. Proinflammatory effects of viral RNA are specifically

mediated by TLR3 and significantly enhanced by tumor necrosis factor alpha

(TNFa). HCV-RNA induces the endothelial expression of TNFa and TNFa receptor

subtype 2 and we provide evidence that leucocyte adhesion and transmigration in

response to activation of viral RNA receptors seem to depend on expression of

functional TNFR2. Our results demonstrate that endothelial cells actively participate

in immune mediated vascular inflammation caused by viral infections.
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Introduction

More than 170 million people worldwide are chronically infected with the

hepatitis C virus (HCV), which is responsible for over 1 million deaths resulting

from cirrhosis and primary liver cancers [1]. Besides liver disease, HCV infection

is frequently associated with a variety of autoimmune phenomenona with

extrahepatic manifestations including cryoglobulinemia [2, 3], renal disease [4]

and vasculitis [2, 3, 5, 6, 7]. Extrahepatic manifestations are often severe and

contribute significantly to morbidity and mortality. We have previously shown

the impact of activation of viral receptors of the innate immune system,

particularly TLR3, on HCV-associated glomerulonephritis [8, 9, 10]. Here we

provide evidence for a role of receptors of the innate immune system in virally

induced inflammation of the endothelium.

Toll-like receptors (TLR) are an essential part of the innate immune system. TLR

recognize conserved pathogen-associated molecular patterns (PAMP) and are

expressed on immune cells but also on a number of non-immune cells. TLR

recognize molecular patterns associated with microbial pathogens and induce an

immune response [11]. TLR3 specifically binds dsRNA of viral origin as well as

polyriboinosinic:polyribocytidylic acid (poly (I:C)), a synthetic analogue of viral

dsRNA [12]. Besides TLR3, the helicase retinoic acid-inducible gene I (RIG-I) and

melanoma differentiation-associated gene 5 (MDA5) may also act as sensors of viral

infections by recognition of viral dsRNA [13, 14, 15]. Here we show that both poly

(I:C) and HCV-RNA isolated from patients infected with the Hepatitis C virus

induce the endothelial expression of proinflammatory cytokines, chemokines and

type I interferons as well as adhesion molecules. These effects of viral RNA on

endothelial cells are specifically mediated by TLR3. Furthermore, we demonstrate

an immunomodulatory role of the TNFa/TNF receptor system in HCV-associated

vasculitis with a potential impact on the development of new therapeutic strategies.

Materials and Methods

Human microvascular endothelial cells (HMEC) were provided by Ades et al. [16]

and cultured in M199 medium supplemented with 10% FCS, 10% endothelial

growth medium (PromoCell, Germany) and 1% penicillin/streptomycin. Human

umbilical vein endothelial cells (HUVEC) were isolated and cultured as described

previously [17]. The procedure was approved by the university ethics review

board (Ethikkommission der Medizinischen Fakultät der Ludwig-Maximilians-

Universität). Written informed consent for the collection and generation of the

cell lines was obtained. Cytokines were used in a concentration of 25 ng/ml

(TNFa), 10 ng/ml (IL-1b) and 20 ng/ml (IFN-c). For cytokine prestimulation

experiments, HMEC were incubated with a combination of TNFa, IL-1b and

IFN-c for 12 hours, washed with PBS, left in culture medium for 6 hours and

washed again with PBS. Subsequently, HMEC were incubated with growth

medium (control) or medium containing poly (I:C). For poly (I:C) prestimula-

tion experiments, HMEC were incubated with poly (I:C) (10 mg/ml) for 24 hours,
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then washed with PBS, and subsequently incubated with TNFa for different time

intervals as indicated. For each stimulation experiment controls were performed

in parallel using culture medium alone.

Animals

Animal experiments were performed in wild-type (WT) and TNFa receptor

subtype 2-deficient (TNFR2-/-) C57BL/6 mice. WT mice were purchased from

Charles River (Germany) and TNFR22/2 mice were originally obtained from the

Jackson Laboratory (USA). Surgical procedures were performed under short-term

anesthesia induced by a single intraperitoneal injection of midazolam 3 mg/kg

(Ratiopharm, Germany), fentanyl 0.03 mg/kg (CuraMED Pharma, Germany),

and medetomidinhydrochloride 0.3 mg/kg (Pfizer, Germany; produced by Orion

Pharma, Finland) diluted in 0.9% NaCl. After the experiments, the animals were

killed by injection of an overdose (2 g/kg) of sodium pentobarbital (Merial,

Germany). All experiments were conducted in accordance with the German

animal protection law and approved by the district government of Upper Bavaria

(approval reference number AZ 55.2-1-54-2531-162-08) and the Institutional

Animal Care and Use Committee (IACUC). The investigation conforms to

Directive 2010/63/EU of the European Parliament. Due to the narrow species

restriction of HCV which allows infection of humans and chimpanzees only and

the resulting lack of non-chimeric small animal models which would allow for

direct studies of hepatitis C virus (HCV), stimulation experiments were

performed with intraperitoneal injection of poly (I:C) as indicated.

Mouse blood cell counts

Mouse blood was collected via a carotid catheter and EDTA used as anticoagulant.

Blood cell counts were measured using a Beckmann Coulter Counter (Beckman

Coulter, Germany).

Spleen weight

Immediately after scarification of the animals the spleen was isolated and

separated from the surrounding connective tissue. Weight of the organ was

measured using a special accuracy weighing machine from Acculab (Sartorius AG,

Germany) and normalized to the body weight of the respective animal.

Intravital microscopy in the mouse cremaster muscle

Leukocyte-endothelium-interaction in vivo was assessed in postcapillary venules

of the mouse cremaster muscle. Mice were anesthetized and the right carotid

artery was cannulated for administration of fluorescent microspheres to

determine blood flow velocity. The cremaster muscle was prepared for intravital

microscopy as originally described by Baez et al [18]. Throughout the procedure

the muscle was kept warm and moist by superfusion of warm buffered saline. In the
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applied in vivo model, leukocyte adhesion in cremaster muscle venules is induced

by the surgical preparation and observed for up to 45 minutes after exteriorization

of the cremaster muscle. Intravital microscopy was performed using a Zeiss

Axiotech Vario microscope (Zeiss, Germany) and leukocyte-endothelium-interac-

tion was analyzed in 5–6 postcapillary venules and recorded using a digital camera

(AxioCam HSm, Zeiss Germany). For measurement of blood flow velocity, green

fluorescent microspheres (1 mm diameter; Polysciences, Germany) were injected via

the carotid artery catheter, and their passage through the vessels of interest was

recorded using the respective fluorescent filter cube. Blood flow was calculated from

the length of a single microsphere in a single image with defined exposure time.

Rolling leukocytes were defined as those moving slower than the blood flow and

their velocity was calculated from the distance they were moving in a defined time

frame. Firmly adherent cells were determined as those resting in vessel for more

than 30 seconds of observation and related to the luminal surface of the observed

vessel part. For investigation of extravasated leukocytes, whole mounts of the

Cremaster muscles were performed immediately after sacrifying the animals and

Giemsa-staining was used to label perivascular leukocytes.

Quantitative reverse transcriptase-polymerase chain reaction

(RT-PCR) analysis

RT-PCR analysis was done as described [8]. Sequences were used as indicated or pre-

developed Taq Man assay reagents or primers and probes were purchased from

Applied Biosystems: NM_003265.2, HS00152933_m1 (human TLR3), NM_014314.3,

Hs00204833_m1 (human RIG-I), NM_022168.2, Hs0170332_m1 (human MDA5),

NM_000600.3, Hs00174131_m1 (human IL-6), NM_000584.2, Hs00174103_m1

(human IL-8), NM_002985.2, Hs00174575_m1 (human RANTES), NM_002982.3,

Hs00234140_m1, (human MCP-1), NM_001565.2, Hs00171042_m1 (human IP-10),

FP: CCT TCC TCC TGT CTG ATG GA; RP: ACT GGT TGC CAT CAA ACT CC; T1:

6FAM CAG ACA TGA CTT TGG ATT TCC CCA GG (human IFN-a),

NM_002176.2, Hs00277188_s1 (human IFN-b), NM_172210.2, NM_172211.2,

NM_172212.2, NM_000757.4 (human MCSF), NM_000201.2, Hs00164932_m1,

(human ICAM-1), NM_001078.3, NM_001199834.1, NM_080682.2,

Hs00365486_m1 (human VCAM-1), NM_000594.2, Hs00174128_m1 (human

TNFa), NM_001065.3, Hs00533560_m1 (human TNFR1), NM_001066.2,

Hs00153550_m1 (human TNFR2) and M33197 (human GAPDH).

ELISA

ELISA for IL-6, IL-8 and IP-10 were performed on cell culture supernatants using

commercial assay kits (R&D Systems, USA) and following providers instructions.

Flow Cytometry

ICAM-1, VCAM-1, E- and P-Selectin located to the cell surface were measured

after fixation with 4% formaldehyde and staining with anti-ICAM-1-FITC,
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anti-VCAM-1-FITC, anti-p-selectin-RPE and anti-Tissue-factor-FITC or the

corresponding FITC- or RPE-labeled negative controls by a FACSCanto II flow

cytometer (Becton Dickinson, USA). Data were analyzed using FACSDiva

software (Becton Dickinson, USA). Antibodies and respective negative controls

were purchased from Biozol (Germany), Southern Biotech (USA) or R&D

Systems (USA) respectively.

Western blot

Western blot analysis was performed as previously described [19]. HMEC were

grown to subconfluence and starved for 24 hours in cell medium containing 1%

FCS prior to stimulation with poly (I:C) for the indicated time intervals. After

washing with PBS the cells were lysed on ice using cell lysis buffer (Cell Signaling

Technology, USA) and protein concentration was determined using BCA

(bicinchoninic acid) protein assay reagent kit according to the manufacturer’s

protocol. Equal amounts of protein were separated by gel electrophoresis (SDS-

PAGE) and blotted onto a nitrocellulose membrane. Membranes were blocked by

incubation 5% (w/v) BSA in TBSt (Tris-buffered saline with Tween) for

30 minutes prior to incubation with a rabbit anti-human-TNFR2-antibody (Cell

signaling Technology, USA) at 4 C̊ overnight. After washing with TBSt the

membrane was incubated with a horseradish peroxidase conjugated secondary

antibody for 1 hour at room temperature. Enzymatic activity was detected with a

chemiluminescence detection kit according to the supplier’s protocol and

recorded with a digital camera (Hamamatsu). GAPDH served as loading control.

Densiometric analysis of the blots was performed digitally using WASABI

Software.

Gene expression in vivo

Animal experiments were performed in wildtype (WT) or TNFa receptor subtype

2 deficient C57BL/6 mice. For gene expression studies in vivo, poly (I:C) or sham

treated mice were sacrified and lungs, kidneys, aorta and cremaster muscle were

immediately isolated and homogenized by adding ceramic microspheres to the

tissue and mixing with a CapMix (3 M ESPE, Germany). RNA isolation was then

performed using a commercially available RNA isolation kit (PeqLab, Germany).

Samples were kept frozen at 220 C̊ until further analysis. For real-time PCR,

commercially available pre-developed TaqMan reagents were used for the mouse

target genes TLR3 and TNFR2. GAPDH was used as reference housekeeping gene.

All measurements were performed in duplicates.

Knockdown of gene expression with short interfering RNA (siRNA)

Predesigned siRNAs specific for TLR3, RIG-I and MDA5 were purchased from

Ambion (Japan). Transfection of cells with siRNA was performed as described

before [13]. Scrambled siRNA was used as the nonspecific negative control of

siRNA.
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Proliferation assays

To assess the proliferative activity of HMEC, MTT assays were performed as

described [20]. Aliquots of 56103 cells in 100 ml culture medium were cultured in

96-well microtiter plates for 24 hours under standard conditions to yield firmly

attached and stably growing cells. After discarding the supernatants, cells were

incubated with poly (I:C) as indicated. After removal of the supernatant, 50 ml of

a 1 mg/ml solution of MTT (Sigma-Aldrich, USA) were added for 3 hours at

37 C̊. Then, formazan crystals were dissolved by the addition of 50 ml isopropanol.

Absorbance was measured at 570 to 690 nm as a reference using a Dynatech

MR7000 ELISA reader (Denkendorf, Germany).

Preparation of HCV RNA

HCV RNA containing cryoprecipitates were isolated from a patient with a HCV

associated MC with a high viral load during routine plasmapheresis treatment and

centrifuged. as described previously [10] The concentration of HCV used for

stimulation was 100 or 2006106 geq/ml, confirmed by RT-PCR. For HCV

stimulation, confluent HMEC in 6-well plates were used; once the virus was

added, the plates were centrifuged at 1000 g for 45 min to allow efficient viral

infection. Subsequent stimulation was performed as indicated.

Histology

Immediately after sacrificing the animals organs were isolated, removed from the

surrounding connective tissue and stored in paraformaldehyde until further

analysis [21].

Statistical analysis

Values are provided as mean ¡ SD. Statistical analysis was performed by the

unpaired t test if applicable or by the ANOVA-analysis. Significant differences in

expression levels are indicated for p values ,0.05 (*) or 0.01 (**), respectively.

Results

Expression of viral RNA receptors of the innate immune system on

human microvascular endothelial cells (HMEC)

We examined cultured HMEC for the expression of the viral dsRNA sensing

receptors TLR3, RIG-I and MDA5. RNA was prepared from cells grown under

standard conditions as well as from cells that had been stimulated with a

combination of the cytokines TNFa, IL-1b and IFN-c for 12 hours to simulate a

proinflammatory milieu as would occur during immune-mediated vasculitis. By

RT-PCR, specific products for TLR3, RIG-I and MDA5 mRNA were amplified

from both unstimulated and stimulated cells. The basal expression for TLR3, RIG-

I and MDA5 was induced by the cytokine combination (Figure 1A–C). In order to
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test the effect of ligand binding on the expression of viral receptors, HMEC were

stimulated with poly (I:C) (10 mg/ml) mimicking viral RNA for different time

intervals (3, 6, 9, 12, 24, 48 hours). Poly (I:C) led to a time dependent increase in

the expression of viral receptors with a maximum after 12 hours (Figure 1D–F).

The time-dependent effect of poly (I:C) on TLR3 protein synthesis was

demonstrated by western blot (Figure 1M). Stimulation of HMEC with different

concentrations (0.5, 5, 10 mg/ml) of poly (I:C) for 12 hours led to a

concentration-dependent increase in the expression of TLR3, RIG-I and MDA5

(Figure 1G-I). Furthermore, HMEC were cultivated under basal conditions or

pretreated with a combination of the proinflammatory cytokines TNF-a, IL-1b

and IFN-c as described, washed and then incubated with poly (I:C) (10 mg/ml) for

12 hours. mRNA levels of TLR3, RIG-I and MDA5 were measured. Again, the

cytokine combination led to an enhanced expression of the viral receptors TLR3,

RIG-I and MDA5; the effect of poly (I:C) on the expression of TLR3 and MDA5

was amplified in cells pretreated with proinflammatory cytokines. (Figure 1J–L).

Additionally, HMEC were screened for mRNA expression of TLR1 through

TLR10 by RT-PCR under basal conditions and after cytokine pretreatment.

HMEC show a robust expression of TLR1, TLR4 and TLR6 without significant

changes after stimulation with proinflammatory cytokines. Under basal condi-

tions, no relevant expression was found for TLR2 and TLR7, but these receptors

were inducible by the cytokine combination. The expression for TLR9, both basal

and after stimulation, was too low to allow for evaluation. No expression was

found for TLR5, TLR8 and TLR10 under any condition (results not shown).

Effect of poly (I:C) stimulation on the expression of selected

cytokines and chemokines, type I interferons, MCSF and adhesion

molecules

HMEC were stimulated with poly (I:C) (10 mg/ml) for different time intervals (3,

6, 9, 12, 24, 48 hours) and the expression of selected proinflammatory cytokines

and chemokines was analyzed by RT-PCR. Poly (I:C) increased the mRNA

expression of IL-6, IL-8, IP-10, RANTES and MCP-1 in a time dependent manner

with a maximum after 12 hours of stimulation time (Figure S1A, C, E, G, H). On

protein level, this effect was confirmed for IL-6, IL-8 and IP-10 by ELISA (Figure

S1B, D, F).

In contrast to the basal expression of IFN-a on HMEC, which was not

significantly changed by incubation with poly (I:C), the expression of IFN-b was

early and stably increased from 3 up to 12 hours of poly (I:C) stimulation. (Figure

S1I, J). MCSF expression was elevated over the whole poly (I:C) stimulation

interval from 3 to 48 hours, with a maximum after 12 hours stimulation (Figure

S1K). mRNA expression of ICAM-1 and VCAM-1 were increased from 3 to

24 hours poly (I:C) stimulation, also with a maximum after 12 hours (figure S1L,

N); a concordant increase in protein synthesis of these adhesion molecules was

confirmed by FACS (Figure S1M, O). Additionally, the surface expression of E-

selectin and P-selectin was analyzed in human umbilical vein endothelial cells
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(HUVEC) by FACS. When HUVEC were stimulated with poly (I:C) for 24 hours,

P-selectin expression was significantly increased, whereas the expression of E-

selectin was increased from 24 to 48 hours of poly (I:C) treatment (Figure S1P,

Q). The stimulating effect of poly (I:C) was also reproducible in HUVEC for the

selected targets IL-6 and ICAM-1 (data not shown).

Effect of poly (I:C) on endothelial cell proliferation

Proliferation of HMEC in response to poly (I:C) was assessed by the MTT

proliferation assay as described. When HMEC were stimulated with poly (I:C)

(10 mg/ml) for different time intervals (3, 6, 9, 12, 24, 48 hours), cell proliferation

was significantly decreased from 6 up to 48 hours stimulation time (Figure S1R).

Effect of HCV-RNA containing cryoprecipitates on the expression

of cytokines, chemokines and adhesion molecules

As we hypothesize a role of receptors of the innate immune system in Hepatitis C

associated vascular inflammation and as we could demonstrate a role of TLR3 in

the mediation of endothelial inflammation and production of adhesion molecules,

we next tested the effect of a stimulation with HCV-RNA containing

cryoprecipitates from a patient with an Hepatitis C-associated cryoglobulinemia

on the expression of selected cytokines, chemokines and adhesion molecules.

Cryoprecipitates were isolated as described in Materials and Methods and HMEC

were stimulated with different concentrations (1006106 geq/ml, 2006106 geq/

ml) of HCV RNA for 12 hours. HCV RNA containing cryoprecipitates increased

the mRNA expression of IL-6, IL-8 and ICAM-1 (Figure 2A, C, E, G). A

concordant increase in protein synthesis was confirmed by ELISA for IL-6, IL-8

and IP-10 (Figure 2B, D, F).

Effect of transfection with siRNA specific for TLR3, RIG-I and MDA5

on poly (I:C) induced gene expression

To define the viral receptor which mediates the poly (I:C)-dependent induction of

the dsDNS sensing receptors, HMEC were transfected with siRNA specific for

TLR3, RIG-I and MDA5 as described and stimulated with poly (I:C) (10 mg/ml)

for 12 hours. Expression of TLR3, RIG-I and MDA5 was measured by RT-PCR.

The poly (I:C)-dependent induction of the expression of TLR3 was significantly

Figure 1. Expression of viral receptors in HMEC. HMEC were stimulated with (Comb) and without (Basal) a combination of the proinflammatory cytokines
TNFa, IL-1b and IFN-c for 12 hours. By RT-PCR, specific products for TLR3 (A), RIG-I (B) and MDA5 (C) mRNA were amplified from both unstimulated and
stimulated cells. HMEC were stimulated without and with poly (I:C) (10 mg/ml) for different time intervals (3, 6, 9, 12, 24, 48 hours) and mRNA expression of
TLR3 (D), RIG-I (E) and MDA5 (F) was analyzed by RT-PCR. Time-dependent effect of poly (I:C) on TLR3 protein expression was confirmed by western blot
(M). HMEC were stimulated without (Basal) and with different concentrations (0.5, 5, 10 mg/ml) of poly (I:C) for 12 hours and expression of TLR3 (G), RIG-I
(H) and MDA5 (I) was measured by RT-PCR. HMEC were pretreated under basal or cytokine combination conditions (Comb) as described in Methods and
after washing incubated with or without poly (I:C) (10 mg/ml) for 12 hours. Expression of TLR3 (J), RIG-I (K) and MDA5 (L) was analyzed by RT-PCR.
Results are given as means ¡ SD of three experiments done in parallel for each condition and rRNA served as the reference gene. Comparable results
were obtained in two series of independent experiments. Statistically significant differences to the control are depicted with * 5p#0.05.

doi:10.1371/journal.pone.0113351.g001
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blocked only by siRNA specific for TLR3; the poly(I:C)-dependent induction of

RIG-I was reduced by transfection with siRNA specific for TLR3 and RIG-I, and

the expression of MDA5 was reduced by the knockdown of any of the three RNA

receptors (Figure S2A–C). To identify the viral receptor responsible for the

induction of cytokines, chemokines and adhesion molecules by poly (I:C), HMEC

were transfected with siRNA specific for TLR3, RIG-I and MDA5 and stimulated

with poly (I:C) (10 mg/ml) for 12 hours. Poly (I:C) increased the expression of the

selected proinflammatory genes IL-6, RANTES, MCP-1, IP-10, IFN-b and

VCAM-1, and these effects were significantly reduced by transfection of HMEC

with siRNA specific for TLR3; transfection with siRNA specific for RIG-I, MDA5

and with negative controls containing unspecific RNA had no effect (Figure S2D-

I).

Effect of poly (I:C) on vascular inflammation in vivo

To test whether poly (I:C)-induced upregulation of inflammatory cytokines and

adhesion molecules on endothelial cells in vitro translates into vascular

inflammation in vivo, C57Bl/6 mice were systemically treated with poly (I:C)

(200 mg i.p.). After 48 h, the white blood cell count was significantly decreased

compared to controls, which was due to a decrease in lymphocyte counts

(Figure 3A, B). Leukocyte rolling and adhesion were observed by intravital

microscopy in trauma-stimulated cremaster muscle venules. While hemodynamic

and microvascular parameters were similar to sham treated controls, leukocyte

rolling velocity was significantly slower in the poly (I:C) treated group

(Figure 3C). Additionally, poly (I:C) increased the fraction of leukocytes adhering

to the vessel wall and consecutively led to a significantly increased extravasation of

leukocytes as detected in whole mounts of cremaster muscles after sacrificing the

animals (Figure 3D, E). Repeated treatment of animals with poly (I:C) (100 mg

every other day for 2 weeks) resulted in a significantly increased leukocyte

adherence in the lung tissue (Figure 3F) as well as in prominent splenomegaly

(Figure 3G).

Effect of TNFa on the expression of cytokines, chemokines, MCSF

and adhesion molecules

As we have previously demonstrated a role for TNFa and its receptors in hepatitis

C virus-associated glomerulonephritis and vascular thrombosis [10, 22] and as we

Figure 2. Effect of HCV RNA containing cryoprecipitates on the expression of cytokines, chemokines
and adhesion molecules. HMEC were stimulated with different concentrations (1006106 geq/ml,
2006106 geq/ml) of HCV RNA containing cryoprecipitates (HCV) for 12 hours and mRNA expression of
selected cytokines and chemokines IL-6 (A), IL-8 (C), IP-10 (E) and adhesion molecule ICAM-1 (G) was
analyzed by RT-PCR. Protein synthesis of IL-6 (B), IL-8 (D) and IP-10 (F) was also confirmed by ELISA.
Results are given as means ¡ SD of three experiments done in parallel for each condition and rRNA served
as the reference gene. Comparable results were obtained in two series of independent experiments.
Statistically significant differences to the control are depicted with * 5p#0.05.

doi:10.1371/journal.pone.0113351.g002
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Figure 3. Effect of poly (I:C) on vascular inflammation in vivo. C57Bl/6 mice were systemically treated with poly (I:C) (200 mg i.p.) and white blood cell
counts were perfomed after 48 hours (A, B). At the same time leukocyte rolling (C) and adhesion (D) in vivo as well as extravasation of leukocytes (E) were
investigated in postcapillary venules of the mouse cremaster muscle by intravital microscopy or in cremaster muscle whole mounts respectively. After
repeated ploly (I:C) treatment (100 mg every other day for 2 weeks) vascular inflammation was investigated in lung tissue as described (F) and spleen weight
was measured (G). Results are given as means ¡ SEM (n54–6 animals). Statistically significant differences to the control are depicted with * 5p#0.05.

doi:10.1371/journal.pone.0113351.g003
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therefore hypothesize a predominant role of the TNFa/TNF receptor system in

vascular inflammation, we now tested the effect of TNFa on the expression of

selected proinflammatory cytokines, chemokines, MCSF and adhesion molecules.

Stimulation of HMEC with TNFa for different time intervals (3, 6, 9, 12,

24 hours) led to a significant increase in the expression of IL-6, IL-8, IP-10

RANTES, MCP-1, IP-10, IFN-b, MCSF, ICAM-1 and VCAM-1 from 3 to

24 hours, with a maximum after a 3 hours’ stimulation time for IL-6 and IL-8,

after 12 hours for IP-10 and RANTES after 24 hours for IFN-b (figure S3A, C, E,

G, I). mRNA expression of MCP-1, MCSF, ICAM-1 and VCAM-1 was stably

increased from 3 to 24 hours of TNFa stimulation (Figure S3H, J, K, L). Increased

protein levels of IL-6, IL-8 and IP-10 (Figure S3B, D, F) and ICAM-1 (data not

shown) were confirmed by ELISA or FACS.

Effect of poly (I:C) stimulation and HCV RNA containing

cryoprecipitates on the expression of TNFa and TNF receptors

Still based on the hypothesis of a predominant role of the TNFa/TNF receptor

system in immune-mediated vascular inflammation, we then tested the effect of

activation of viral receptors on the expression of TNFa and TNF receptors in

HMEC. HMEC were stimulated with poly (I:C) (10 mg/ml) for different time

intervals (3, 6, 9, 12, 24, 48 hours) and the expression of TNFa and the TNF

receptor subtypes TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2) was

analyzed by RT-PCR. Poly (I:C) stimulation increased the expression of TNFa

from 3 to 12 hours of poly (I:C) stimulation time, with a maximum after

12 hours. Knockdown experiments with siRNA specific for TLR3, RIG-I and

MDA5 showed this effect to be TLR3-dependent (Figure 4A, D). Poly (I:C)

stimulation showed a tendency to early enhance the expression of TNFR1, which

though did not reach statistical significance (Figure 4B). TNFR2 mRNA

expression was significantly increased after 6, 9 and 12 hours of poly (I:C)

stimulation (Figure 4C), an effect which was also shown to be TLR3-dependent

and confirmed on protein level by western blot (Figure 4E, F). The stimulating

effect of poly (I:C) on TNFR2 was reproducible in HUVEC (data not shown).

Furthermore, stimulation with HCV-RNA containing cryoprecipitates in different

concentrations (1006106 geq/ml, 2006106 geq/ml), which had been isolated

from a patient with HCV-associated cryoglobulinemia, for 12 hours led to a

significant increase in the expression of TNFR2 (Figure 4G).

Effect of TNFa on the expression of TNF receptors and viral

receptors

To test for an amplification of proinflammatory responses upon activation of viral

receptors by TNFa itself, HMEC were stimulated with TNFa for different time

intervals (3, 6, 9, 12, 24 hours) and the expression of TNFa, the TNF receptors

TNFR1 and TNFR2 as well as of the viral receptors TLR3, RIG-I and MDA5 was

analyzed by RT-PCR. TNFa led to an increase in the expression of TNFa and
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TNFR2 from 3 to 24 hours respectively 9 to 12 hours of stimulation time, but had

no effect on the basal expression of TNFR1 (Figure 4H–J). Expression levels of

TLR3 were significantly increased only after a 24 hours’ stimulation with TNFa,

whereas the expression of RIG-I and MDA5 was already increased after 6 hours

and reached a maximum after 24 hours of TNFa stimulation (Figure 4K-M).

Amplification of poly (I:C) dependent induction of viral receptors

and TNF receptors 2 by TNFa

To test for an additionally permissive effect of TNFa on the ligand dependent

induction of the dsRNA sensing viral receptors TLR3, RIG-I and MDA5 as well as

on TNFR2, HMEC were incubated with poly (I:C) (10 mg/ml) for 24 hours and

then incubated in culture medium or stimulated with TNFa for different time

intervals (6, 12, 24 hours). As expected, the expression of TLR3, RIG-I and MDA5

was increased by poly (I:C), and the subsequent incubation with TNFa further

induced expression levels of all these viral receptors and of TNFR2 (Figure S4A–

D).

Amplification of poly (I:C) dependent induction of cytokines,

chemokines and adhesion molecules by TNFa

To test whether TNFa would also directly amplify endothelial inflammatory

responses seen upon activation of viral receptors by poly (I:C), HMEC were

stimulated by poly (I:C) (10 mg/ml) for 24 hours and subsequently incubated with

TNFa for different time intervals (6, 12, 24 hours). Poly (I:C) led to an increase in

the expression of IL-6, IL-8, IP-10, RANTES, IFN-b and MCSF (Figure 5A, C, E,

G, I, J), whereas MCP-1, ICAM-1 and VCAM-1 were not significantly increased

by stimulation with poly (I:C) alone (figure 5H, K, L). The stimulatory effects of

poly (I:C) were significantly potentiated by TNFa treatment for 6, 12 and

24 hours. A parallel increase in protein synthesis of IL-6, IL-8 and IP-10 was

confirmed by ELISA (Figure 5B, D, H).

Role of TNFR2 in poly (I:C) induced vascular inflammation

We next investigated the expression of TLR3 and TNFR2 upon activation of viral

RNA receptors in organ lysates of wild-type (WT) and TNFa receptor subtype 2-

Figure 4. Effect of poly (I:C) and HCV RNA containing cryoprecipitates on the expression of TNFa and TNF receptors; effect of TNFa on the
expression of TNF receptors and viral receptors. HMEC were stimulated without (basal) and with poly (I:C) (10 mg/ml) for different time intervals (3, 6, 9,
12, 24, 48 hours) and expression of TNFa (A), TNF receptor 1 (TNFR1) (B) and TNF receptor 2 (TNFR2) (C) was analyzed by RT-PCR. (D, E) HMEC were
transfected with siRNA for TLR3, RIG-I and MDA5 as well as unspecific RNA as negative control as described in Materials and Methods and stimulated with
poly (I:C) (10 mg/ml) for 12 hours. Expression of TNFa (D) and TNFR2 (E) was analyzed by RT-PCR. Protein expression of TNFR2 after different time
intervals of poly (I:C) stimulation (3, 6, 9, 12, 48 hours) was confirmed by western blot (F). HMEC were stimulated with different concentrations
(1006106 geq/ml, 2006106 geq/ml) of HCV RNA containing cryoprecipitates for 12 hours and mRNA expression of TNFR2 (G) was analyzed by RT-PCR.
HMEC were stimulated with TNFa for different time intervals (3, 6, 9, 12, 24 hours) and expression of TNFa (H), TNFR1 (I), TNFR2 (J), TLR3 (K), RIG-I (L)
and MDA5 (M) was analyzed by RT-PCR. Results are given as means ¡ SD of three experiments done in parallel for each condition and rRNA served as
the reference gene. Comparable results were obtained in two series of independent experiments. Statistically significant differences to the control are
depicted with * 5p#0.05.

doi:10.1371/journal.pone.0113351.g004
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deficient (TNFR2-/-) C57BL/6 mice. WT or TNFR2-/- mice were treated with poly

(I:C) 200 mg i.p. as described and TLR3 and TNFR2 mRNA levels were analyzed

after 24 and 48 hours. After 24 hours, poly (I:C) had no effect on TLR3 or TNFR2

expression in lung tissue of WT or TNFR2-/- mice (data not shown), whereas after

48 hours poly (I:C) upregulated TLR3 expression in lung, kidney, aorta and

cremaster muscle of both WT and TNFR2-/- mice (Figure 6A). Moreover, after

48 hours of poly (I:C) treatment, a significant increase in the expression of

TNFR2 in lung, kidney, aorta and cremaster muscle of WT mice was observed;

obviously, no expression of TNFR2 was found in TNFR2-/- mice (Figure 6B). Poly

(I:C) decreased the white blood cell count in both WT and TNFR2-/- mice

(Figure 6C). The poly (I:C)-dependent increase in rolling leukocytes in cremaster

Figure 5. Amplification of poly (I:C)-mediated induction of cytokines, chemokines and adhesion molecules by TNFa. HMEC were grown in culture
medium for 24 hours and additionally incubated in medium (basal) for different time intervals (6, 12, 24 hours) or grown in culture medium for 24 hours and
additionally incubated with TNFa (TNFa) for different time intervals (6, 12, 24 hours) or incubated with poly (I:C) for 24 hours and then grown in medium
(poly (I:C)) or stimulated with TNFa (poly (I:C) + TNFa) for different time intervals (6, 12, 24 hours). mRNA expression of selected cytokines and chemokines
IL-6 (A), IL-8 (C), IP-10 (E), RANTES (G), MCP-1 (H), IFN-b (I), MCSF (J), ICAM-1 (K) and VCAM-1 (L) was analyzed by RT-PCR. Protein synthesis of
selected targets IL-6 (B), IL-8 (D) and IP-10 (F) was also confirmed by ELISA. Results are given as means ¡ SD of three experiments done in parallel for
each condition and rRNA served as the reference gene. Comparable results were obtained in two series of independent experiments. Statistically significant
differences to the control are depicted with *5p#0.05, **5p#0.01.

doi:10.1371/journal.pone.0113351.g005
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muscle venules and in leukocyte adherence in vivo reached statistical significance

only in WT, not in TNFR2-/- mice (Figure 6D, E).

Discussion

Hepatitis C virus (HCV)-related systemic vasculitis is a severe complication of

infection with HCV and causes significant morbidity and mortality [23]. HCV-

associated vasculitis has been described to occur both in the presence and in the

absence of mixed cryoglobulinemia (MC) [24], and up to 10% of patients with

MC develop systemic vasculitis [6, 7]. From the patients found to have MC, more

than 80% are infected by HCV [2, 3, 5, 6]. During disease course, immune

complexes containing viral RNA reach the small and medium-sized arteries and

veins and deposit in the vessel walls. The clinical features of HCV-associated

vasculitis not only include the classical triad of purpura, arthralgias and myalgias,

but also prognostically severe forms of glomerulonephritis, lymphoproliferative

disorders, neuropathies and skin ulcerations as well as other dermatologic

conditions [25].

Figure 6. Role of TNFR2 in poly (I:C) induced vascular inflammation. WTand TNFR2-/- mice were sham treated or treated with poly (I:C) 200 mg i.p. as
described and expression of TLR3 and TNFR2 was analyzed by RT-PCR. Expression of TLR3 (A) and TNFR2 (B) was measured in lung, kidney, aorta and
cremaster muscle tissue after 48 hours. At the same time point white blood cell counts were performed and effects of poly (I:C) on trauma-induced leukocyte
rolling and adherence in vivo were investigated in cremaster muscle venules by intravital microscopy (C–E). Statistically significant differences to the control
are depicted with * 5p#0.05.

doi:10.1371/journal.pone.0113351.g006
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Cytokines and chemokines play a central role in the immune response to HCV

as they mediate antiviral and proinflammatory effects in immune as well as

primarily non-immune cell types [26, 27, 28]. In the clinical setting, serum levels

of proinflammatory mediators including IL-6 and TNFa have been shown to be

increased in patients with an HCV-associated MC and are found to be particularly

elevated during active vasculitis [29]. Furthermore, the emergence of severe

vasculitis due to HCV-associated MC was shown to be dependent on the

induction of adhesion molecules including VCAM-1 and ICAM-1, both involved

in mononuclear respectively polymorphonuclear and mononuclear cell recruit-

ment during vasculitis [30]. However, so far there are no data on the contribution

of endothelial viral receptors of the innate immune system, which are able to bind

nucleic acids of viral origin and elicit proinflammatory responses, to HCV-

associated vasculitis. There is large body of evidence for several receptors for

dsRNA existing in eukaryontic cells, including TLR3 and the cytosolic receptors

RIG-I and MDA5 [31, 32]. In human and murine endothelial cells, the synthetic

analogue of dsRNA of viral origin, poly (I:C), is known to have various

proinflammatory effects [33, 34, 35]. These effects depend on the origin of the

endothelial cells as to species and vascular bed [36].

In the present manuscript we demonstrate for the first time that HCV-RNA

isolated from a patient with HCV-associated MC significantly induces both

expression and synthesis of a variety of mediators known to be relevant to the

initiation and propagation of inflammation in viral disease, and the adhesion

molecule ICAM-1. We infer that HCV directly promotes activation, adhesion and

infiltration of inflammatory cells into the vessel wall by activation of viral

receptors of the innate immune system in endothelial cells. Due to the ability of

HCV to both recruit leucocytes to the endothelium and sustain local

inflammatory responses, any relevant viremia could cause a clinically apparent

vasculitis. As a matter of fact, in mice systemically treated with the synthetic

analogue of viral dsRNA poly (I:C), we found a significant reduction in leukocyte

rolling velocity as well as an increase in leukocyte adhesion to the vessel wall,

which was paralleled by a significantly increased extravasation of leukocytes in

vivo. In addition, poly (I:C) induces the expression of the corresponding receptor

TLR3 in vivo and hereby allows for amplification of all of the aforementioned

responses upon viral infection. These findings underscore the relevance of direct

effects of circulating nucleic acids of viral origin on the pathogenesis of vasculitis.

In vitro stimulation of viral receptors with poly (I:C) causes a time- and dose-

dependent induction of IL-6, IL-8, RANTES, MCP-1, IP-10 and IFN-b as well as

MCSF and the adhesion molecules ICAM-1 and VCAM-1 in HMEC. Using

knockdown experiments with siRNAs specific for the viral receptors TLR3, RIG-I

and MDA5, we provide evidence for a mutual dependence of the regulation of

viral RNA receptors upon ligand binding as well as for a selective mediation of the

poly (I:C)-dependent induction of proinflammatory genes by TLR3. We presume

these effects to promote vascular inflammation in vivo once circulating HCV-

RNA binds to viral receptors of the innate immune system, a process which does

not presuppose viral entry and replication in endothelial cells. Even though not
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classifying as primary target cells of HCV, however, HMEC express CD81

tetraspanin, the scavenger receptor class B type I, tight junction proteins and LDL

receptors, all of them able to mediate HCV entry into hepatic and non-hepatic

cells [37, 38]. Furthermore, human brain endothelial cells have already been found

to express functional receptors that support HCV entry and replication [39]. The

contribution of a direct viral infection of HMEC to extrahepatic manifestations of

HCV infection thus merits future attention.

An important mediator involved in both the early antiviral response and a

variety of immune and autoimmune phenomena associated with viral diseases is

tumor necrosis factor alpha (TNFa). Referring to vasculitis in particular, TNFa
is known to partly mediate the prothrombotic conditions implicated by systemic

inflammation, and small vessel occlusion results in an amplification of local

inflammatory responses. In this manuscript we show that TNFa adds

significantly to the proinflammatory effects of viral RNA on endothelial cells and

therefore plays an important role in the initiation and propagation of vascular

manifestations of HCV-infection. In addition, we show for the first time that

HCV-RNA containing cryoprecipitates significantly induce the endothelial

expression of TNFa and TNFa receptor subtype 2 (TNFR2) in vitro and we

provide evidence that leucocyte adhesion and transmigration in response to

activation of viral RNA receptors in vivo seem to depend on the expression of

functional TNFR2. While TNFR1 is constitutively expressed in most tissues, the

expression of TNFR2 is highly regulated and mediates tissue damage in chronic

inflammation; this effect possibly depends on the induction of endogenous

TNFa via activation of TNFR2, which increases local TNFa concentrations and

subsequently activates TNFR1 [40]. Our observation of a selective induction of

TNFR2 by HCV-RNA and the requirement of functional TNFR2 for

endothelium-dependent leucocyte activation in poly (I:C)-treated mice would

again favour the therapeutic use of a TNFR2-specific antagonist, already

advocated for its potential to downregulate excessive TNFa signaling in

uncontrolled inflammatory processes without affecting beneficial TNFa effects.

In view of the fact that the treatment of HCV-associated vasculitis is largely

empirical, this alternative therapeutic approach might be of particular clinical

relevance. Indeed, the current standard therapy is antiviral treatment with peg-

inteferon plus ribavirin without use of systemic immunosuppressive agents

[6, 41]; for MC, a therapy with Rituximab, a monoclonal antibody against the

CD 20 antigen expressed on B cells, can be considered in patients with severe

clinical manifestations including vasculitis, glomerulonephritis or neuropathy

[42].

In summary, our results demonstrate that endothelial cells actively participate

in immune mediated vascular inflammation caused by viral infections. Activation

of the pattern-recognition receptor TLR3 by HCV-RNA and poly (I:C) induces

the expression of proinflammatory cytokines, chemokines and adhesion molecules

and might thereby directly contribute to viral disease-associated vasculitis. TNFa
adds significantly to the proinflammatory effects of viral RNA on endothelial cells.

In vivo, poly (I:C) enhances leucocyte adhesion and transmigration, an effect
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which seems to selectively depend on subtype specific signalling of TNFa via

TNFR2.

Supporting Information

Figure S1. Effect of poly (I:C) on the expression of cytokines, chemokines, type

I interferons, MCSF and adhesion molecules on HMEC. HMEC were stimulated

without (basal) and with poly (I:C) (10 mg/ml) for different time intervals (3, 6, 9,

12, 24, 48 hours) and mRNA expression of IL-6 (A), IL-8 (C), IP-10 (E), RANTES

(G), MCP-1 (H), IFN-a (I), IFN-b (J), MCSF (K), ICAM-1 (L) and VCAM-1 (N)

was analyzed by RT-PCR. Protein synthesis of selected factors IL-6 (B), IL-8 (D)

and IP-10 (F) was confirmed by ELISA. Protein synthesis of ICAM-1 (M) and

VCAM-1 (O) was confirmed by FACS. Surface expression of E-selectin (P) and P-

selectin (Q) was analyzed in HUVEC by FACS. Results are given as means ¡ SD

of three experiments done in parallel for each condition and rRNA served as the

reference gene. Comparable results were obtained in two series of independent

experiments. (R) HMEC were stimulated with poly (I:C) (10 mg/ml) for different

time intervals (0, 3, 6, 9, 12, 24, 48 hours) and cell proliferation was analyzed by

the MTT assay. Each bar represents a mean ¡ SD of 24 parallel incubations for

each condition. Comparable results were obtained in four series of independent

experiments. Statistically significant differences to the control are depicted with *

5p#0.05.

doi:10.1371/journal.pone.0113351.s001 (EPS)

Figure S2. Effects of transfection with siRNA for TLR3, RIG-I and MDA5 on

poly (I:C) induced gene expression. HMEC were transfected with siRNA for

TLR3, RIG-I and MDA5 as well as unspecific RNA as negative control as described

in Materials and Methods and stimulated with poly (I:C) (10 mg/ml) for 12 hours.

Expression of TLR3 (A), RIG-I (B), MDA5 (C) IL-6 (D), RANTES (E), MCP-1

(F), IP-10 (G), IFN-b (H), ICAM-1 (I) and VCAM-1 (J) was analyzed by RT-

PCR. Results are given as means ¡ SD of three experiments done in parallel for

each condition and rRNA served as the reference gene. Comparable results were

obtained in two series of independent experiments. Statistically significant

differences to the control are depicted with * 5p#0.05.

doi:10.1371/journal.pone.0113351.s002 (EPS)

Figure S3. Effect of TNFa on the expression of cytokines, chemokines and

adhesion molecules. HMEC were stimulated with TNFa for different time intervals

(3, 6, 9, 12, 24 hours) and mRNA expression of IL-6 (A), IL-8 (C), IP-10 (E),

RANTES (G), MCP-1 (H), IFN-b (I), MCSF (J), ICAM-1 (K) and VCAM-1 (L) was

analyzed by RT-PCR. Protein synthesis of IL-6 (B), IL-8 (D) and IP-10 (F) was

analyzed by ELISA. Results are given as means ¡ SD of three experiments done in

parallel for each condition and rRNA served as the reference gene. Comparable

results were obtained in two series of independent experiments. Statistically

significant differences to the control are depicted with * 5p#0.05, ** 5p#0.01.

doi:10.1371/journal.pone.0113351.s003 (EPS)
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Figure S4. Amplification of poly (I:C)-dependent induction of viral receptors

and TNF receptor 2 by TNFa. HMEC were grown in culture medium for

24 hours and additionally incubated in medium (basal) for different time

intervals (6, 12, 24 hours) or grown in culture medium for 24 hours and

additionally incubated with TNFa (TNFa) for different time intervals (6, 12,

24 hours) or incubated with poly (I:C) for 24 hours and then grown in medium

(poly (I:C)) or stimulated with TNFa (poly (I:C) + TNFa) for different time

intervals (6, 12, 24 hours). Expression of TLR3 (A), RIG-I (B) and MDA5 (C) as

well as TNFR2 (D) was analyzed by RT-PCR. Results are given as means ¡ SD of

three experiments done in parallel for each condition and rRNA served as the

reference gene. Comparable results were obtained in two series of independent

experiments. Statistically significant differences to the control are depicted with *

5p#0.05.

doi:10.1371/journal.pone.0113351.s004 (EPS)
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