503 research outputs found

    Exploring the interplay between Buddhism and career development : a study of highly skilled women workers in Sri Lanka

    Get PDF
    This article adopts a socio cultural lens to examine the role of Buddhism in highly skilled women workers’ careers in Sri Lanka. While Buddhism enabled women’s career development by giving them strength to cope with difficult situations in work, it also seemed to restrict their agency and constrain their career advancement. Based on our findings, we argue that being perceived as a good Buddhist woman worked as a powerful form of career capital for the respondents in our sample, who used their faith to combat gender disadvantage in their work settings

    Crosstalk between G-protein and Ca2+ pathways switches intracellular cAMP levels

    Get PDF
    Cyclic adenosine monophosphate and cyclic guanosine monophosphate are universal intracellular messengers whose concentrations are regulated by molecular networks comprised of different isoforms of the synthases adenylate cyclase or guanylate cyclase and the phosphodiesterases which degrade these compounds. In this paper, we employ a systems biology approach to develop mathematical models of these networks that, for the first time, take into account the different biochemical properties of the isoforms involved. To investigate the mechanisms underlying the joint regulation of cAMP and cGMP, we apply our models to analyse the regulation of cilia beat frequency in Paramecium by Ca(2+). Based on our analysis of these models, we propose that the diversity of isoform combinations that occurs in living cells provides an explanation for the huge variety of intracellular processes that are dependent on these networks. The inclusion of both G-protein receptor and Ca(2+)-dependent regulation of AC in our models allows us to propose a new explanation for the switching properties of G-protein subunits involved in nucleotide regulation. Analysis of the models suggests that, depending on whether the G-protein subunit is bound to AC, Ca(2+) can either activate or inhibit AC in a concentration-dependent manner. The resulting analysis provides an explanation for previous experimental results that showed that alterations in Ca(2+) concentrations can either increase or decrease cilia beat frequency over particular Ca(2+) concentration ranges

    Superweakly interacting dark matter from the Minimal Walking Technicolor

    Full text link
    We study a superweakly interacting dark matter particle motivated by minimal walking technicolor theories. Our WIMP is a mixture of a sterile state and a state with the charges of a standard model fourth family neutrino. We show that the model can give the right amount of dark matter over a range of the WIMP mass and mixing angle. We compute bounds on the model parameters from the current accelerator data including the oblique corrections to the precision electroweak parameters, as well as from cryogenic experiments, Super-Kamiokande and from the IceCube experiment. We show that consistent dark matter solutions exist which satisfy all current constraints. However, almost the entire parameter range of the model lies within the the combined reach of the next generation experiments.Comment: 29 pages, 6 figure

    Search for Supersymmetric Dark Matter with Superfluid He3 (MACHe3)

    Full text link
    MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for direct Dark Matter search, using superfluid He3 as a sensitive medium. This paper presents a phenomenological study done with the DarkSUSY code, in order to investigate the discovery potential of this project of detector, as well as its complementarity with existing and planned devices.Comment: 15 pages, 5 figures, submitted to Phys. Letters B, minor changes in the tex

    Charge amplification concepts for direction-sensitive dark matter detectors

    Full text link
    Direction measurement of weakly interacting massive particles in time-projection chambers can provide definite evidence of their existence and help to determine their properties. This article demonstrates several concepts for charge amplification in time-projection chambers that can be used in direction-sensitive dark matter search experiments. We demonstrate reconstruction of the 'head-tail' effect for nuclear recoils above 100keV, and discuss the detector performance in the context of dark matter detection and scaling to large detector volumes.Comment: 15 pages, 9 figure

    First Results from the DRIFT-IIa Dark Matter Detector

    Get PDF
    Data from the DRIFT-IIa directional dark matter experiment are presented, collected during a near continuous 6 month running period. A detailed calibration analysis comparing data from gamma-ray, x-ray and neutron sources to a GEANT4 Monte Carlo simulations reveals an efficiency for detection of neutron induced recoils of 94+/-2(stat.)+/-5(sys.)%. Software-based cuts, designed to remove non-nuclear recoil events, are shown to reject 60Co gamma-rays with a rejection factor of better than 8x10-6 for all energies above threshold. An unexpected event population has been discovered and is shown here to be due to the alpha-decay of 222Rn daughter nuclei that have attached to the central cathode. A limit on the flux of neutrons in the Boulby Underground Laboratory is derived from analysis of unshielded and shielded data.Comment: 43 pages, 14 figures, submitted to Astroparticle Physic

    Constraints on inelastic dark matter from XENON10

    Full text link
    It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results from CDMS-II and XENON10. Among the predictions of inelastically interacting dark matter are a suppression of low-energy events, and a population of nuclear recoil events at higher nuclear recoil equivalent energies. This is in stark contrast to the well-known expectation of a falling exponential spectrum for the case of elastic interactions. We present a new analysis of XENON10 dark matter search data extending to Enr=75_{nr}=75 keV nuclear recoil equivalent energy. Our results exclude a significant region of previously allowed parameter space in the model of inelastically interacting dark matter. In particular, it is found that dark matter particle masses mχ150m_{\chi}\gtrsim150 GeV are disfavored.Comment: 8 pages, 4 figure

    CDMS, Supersymmetry and Extra Dimensions

    Get PDF
    The CDMS experiment aims to directly detect massive, cold dark matter particles originating from the Milky Way halo. Charge and lattice excitations are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK, allowing to separate nuclear recoils from the dominating electromagnetic background. The operation of 12 detectors in the Soudan mine for 75 live days in 2004 delivered no evidence for a signal, yielding stringent limits on dark matter candidates from supersymmetry and universal extra dimensions. Thirty Ge and Si detectors are presently installed in the Soudan cryostat, and operating at base temperature. The run scheduled to start in 2006 is expected to yield a one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on sources and detection of dark matter and dark energy in the universe, Marina del Rey, Feb 22-24, 200
    corecore