6 research outputs found

    Carcinogenicity of cobalt, antimony compounds, and weapons-grade tungsten alloy

    Get PDF
    The complete evaluation of the carcinogenicity of cobalt, antimony compounds, and weapons-grade tungsten alloy will be published in Volume 131 of the IARC Monographs.[Excerpt] In March, 2022, a Working Group of 31 scientists from 13 countries met remotely at the invitation of the International Agency for Research on Cancer (IARC) to finalise their evaluation of the carcinogenicity of nine agents: cobalt metal (without tungsten carbide or other metal alloys), soluble cobalt(II) salts, cobalt(II) oxide, cobalt(II,III) oxide, cobalt(II) sulfide, other cobalt(II) compounds, trivalent antimony, pentavalent antimony, and weapons-grade tungsten (with nickel and cobalt) alloy. For cobalt metal and the cobalt compounds, particles of all sizes were included in the evaluation. These assessments will be published in Volume 131 of the IARC Monographs.1 Cobalt metal and soluble cobalt(II) salts were classified as “probably carcinogenic to humans” (Group 2A) based on “sufficient” evidence for cancer in experimental animals and “strong” mechanistic evidence in human primary cells. Cobalt(II) oxide and weapons-grade tungsten alloy were classified as “possibly carcinogenic to humans” (Group 2B) based on “sufficient” evidence in experimental animals. Trivalent antimony was classified as “probably carcinogenic to humans” (Group 2A), based on “limited” evidence for cancer in humans, “sufficient” evidence for cancer in experimental animals, and “strong” mechanistic evidence in human primary cells and in experimental systems. Cobalt(II,III) oxide, cobalt(II) sulfide, other cobalt(II) compounds, and pentavalent antimony were each evaluated as “not classifiable as to its carcinogenicity to humans” (Group 3).[...

    Respiratory Protection Perceptions among Malian Health Workers: Insights from the Health Belief Model

    No full text
    Reusable respiratory protective devices called elastomeric respirators have demonstrated their effectiveness and acceptability in well-resourced healthcare settings. Using standard qualitative research methods, we explored the feasibility of elastomeric respirator use in low- and middle-income countries (LMIC). We conducted interviews and focus groups with a convenience sample of health workers at one clinical center in Mali. Participants were users of elastomeric and/or traditional N95 respirators, their supervisors, and program leaders. Interview transcripts of participants were analyzed using a priori constructs from the Health Belief Model (HBM) and a previous study about healthcare respirator use. In addition to HBM constructs, the team identified two additional constructs impacting uptake of respirator use (system-level factors and cultural factors). Together, these framed the perceptions of Malian health workers and highlighted both facilitators of and barriers to respirator use uptake. As needs for respiratory protection from airborne infectious hazards become more commonly recognized, elastomeric respirators may be a sustainable and economic solution for health worker protection in LMIC
    corecore