27 research outputs found

    Porcine FcγRIIb Mediates Enhancement of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection

    Get PDF
    Antibody-dependent enhancement (ADE) of virus infection caused by the uptake of virus-antibody complexes by FcγRs is a significant obstacle to the development of effective vaccines to control certain human and animal viral diseases. The activation FcγRs, including FcγRI and FcγRIIa have been shown to mediate ADE infection of virus. In the present paper, we showed that pocine FcγRIIb, an inhibitory FcγR, mediates ADE of PRRSV infection. Stable Marc-145 cell lines expressing poFcγRIIb (Marc-poFcγRII) were established. The relative yield of progeny virus was significantly increased in the presence of sub-neutralization anti-PRRSV antibody. The Fab fragment and normal porcine sera had no effect. Anti-poFcγRII antibody inhibited the enhancement of infection when cells were infected in the presence of anti-PRRSV antibody, but not when cells were infected in the absence of antibody. These results indicate that enhancement of infection in these cells by anti-PRRSV virus antibody is FcγRII-mediated. Identification of the inhibitory FcγR mediating ADE infection should expand our understanding of the mechanisms of pathogenesis for a broad range of infectious diseases and may open many approaches for improvements to the treatment and prevention of such diseases

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Preparation and Properties of Soft-/Hard-Switchable Transparent Wood with 0 °C as a Boundary

    No full text
    Transparent wood has excellent optical and thermal properties and has great potential utilization value in energy-saving building materials, optoelectronic devices, and decorative materials. In this work, transparent wood with soft-/hard-switchable and shape recovery capabilities was prepared by introducing an epoxy-based polymer with a glass transition temperature of about 0 °C into the delignified wood template. The epoxy resin was well filled in the pore structure of the delignified wood, and the as-prepared wood exhibited excellent transparency; the optical transmittance and haze of the transparent wood with a thickness of 2.0 mm were approximately 70% and 95%, respectively. Because the glass transition temperature of the epoxy-based polymer was about 0 °C, the prepared transparent wood was rigid below 0 °C and flexible above °C; meanwhile, the transparent wood exhibited shape change and shape recovery properties. Incorporating optical transparency and soft-/hard-switchable ability into the transparent wood opens a new avenue for developing advanced functional wood-based materials

    The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: a molecular epidemiological perspective

    No full text
    Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) has been epidemic more than 30 years in America and 20 years in China. It is still one of the most important causative agents to the worldwide swine industry. Here, we systematically analyzed the prevalence status of PRRSV in China by a molecular epidemiological perspective. Now both PRRSV-1 and PRRSV-2 are circulating and approximately more than 80% of pig farms are seropositive for PRRSV. For PRRSV-2, there are four lineages (lineage 1, lineage 3, lineage 5, lineage 8) circulating in the fields. Lineage 8 (CH-1a-like) and lineage 5 (BJ-4-like) appeared almost at the same time during 1995-1996. Notably, BJ-4 shares 99.6% and 99.8% identity with VR2332 and RespPRRS MLV, respectively. It means that lineage 5 is likely to be imported from America. Now highly pathogenic PRRSV (HP-PRRSV) which was considered to be evolved from local diversity of lineage 8 strains is predominant with different variants. Lineage 3 appeared in 2010 which is mainly sporadic in south of China. Lineage 1, also known as NADC30-like strains in China, has been prevalent since 2013 and leads to PRRS pandemic again. For PRRSV-1, although sporadic at present, more than 9 provinces/regions have been reported. All the circulating strains belong to subtype I. It should be paid more attention since there are no vaccines available. Our analysis would help to deeply understand the prevalent status of PRRSV in China and provide useful information for prevention and control of porcine reproductive and respiratory syndrome (PRRS)

    Preparation of Epoxy Resin with Disulfide-Containing Curing Agent and Its Application in Self-Healing Coating

    No full text
    Intrinsic self-healing polymers via dynamic covalent bonds have been attracting extensive attention because of their repeatable self-healing property. Herein, a novel self-healing epoxy resin was synthesized with disulfide-containing curing agent via the condensation of dimethyl 3,3′-dithiodipropionate (DTPA) and polyether amine (PEA). Therefore, in the structure of cured resin, flexible molecular chains and disulfide bonds were imported into the cross-linked polymer networks for triggering self-healing performance. The self-healing reaction of cracked samples was realized under a mild condition (60 °C for 6 h). The distribution of flexible polymer segments, disulfide bonds and hydrogen bonds in cross-linked networks plays a great role in the self-healing process of prepared resins. The molar ratio of PEA and DTPA strongly affects the mechanical performance and self-healing property. Especially when that molar ratio of PEA to DTPA is 2, the cured self-healing resin sample showed great ultimate elongation (795%) and excellent healing efficiency (98%). The products can be used as an organic coating, in which the crack could self-repair during a limited time. The corrosion resistance of a typical cure coating sample has been testified by an immersion experiment and electrochemistry impedance spectrum (EIS). This work provided a simple and low-cost route to prepare a self-healing coating for prolonging the service life of conventional epoxy coatings

    Development and Evaluation of a Blocking Lateral Flow Assay Strip for Detection of Newcastle Disease Virus Antibodies

    No full text
    Newcastle disease (ND) is an acute septicemic infectious disease caused by Newcastle disease virus (NDV). Considering that vaccination is currently the main modality for the prevention of ND, it is essential to assess the effectiveness of clinical immunization. In this study, we have developed a blocking lateral flow assay (bLFA) strip for the rapid detection of NDV antibodies using the monoclonal antibody 9C1 against haemagglutinin-neuraminidase (HN), which allows for the determination of an NDV-specific antibody titer within 10 min at room temperature. In addition, the bLFA strip has no cross-reactivity with the positive serum of other avian pathogens including avian influenza subtypes H5, H7, and H9, MD, IBD, IB, EDS, and avian adenovirus. The ability of the bLFA strip for detecting a neutralizing antibody was also estimated. The results showed that the chicken NDV hyperimmunized serum had a complete blocking (100%) titer of 11 log 2, and half-blocking titer of 13 log 2, which are 4 times less than and the same as that of the HI test (13 log 2), and 8 and 2 times less than that of the VN test (14 log 2), respectively. A total of 510 clinical samples were tested for NDV antibodies. The coincidence rate between the results of the bLFA strip and HI test was 97.65%. Therefore, it is an ideal alternative method for assessing the clinical immunity of ND vaccines in the field in real-time

    Identification of the linear epitope for Fc-binding on the bovine IgG2 Fc receptor (boFcγ2R) using synthetic peptides

    Get PDF
    AbstractTo identify the linear epitope for Fc-binding on the bovine IgG2 Fc receptor (boFcγ2R), peptides derived from the membrane-distal extracellular domain (EC1) of boFcγ2R corresponding to the homologous region of human FcαRI were synthesized. Binding of bovine IgG2 to the different peptides was tested by Dot-blot assay, and the peptide showing maximal binding was further modified by truncation and mutation. The minimum effective peptide 82FIGV85 located in the putative F–G loop of the EC1 domain was found to bind bovine IgG2 specifically and inhibit the binding of bovine IgG2 to the receptor. The Phe82, Ile83 and Val85 residues within the linear epitope were shown to be critical for IgG2-binding. Such functional epitope peptide should be very useful for understanding the IgG-Fcγ interaction and development of FcR-targeting drugs
    corecore