94 research outputs found

    Novel Pathway of Adipogenesis through Cross-Talk between Adipose Tissue Macrophages, Adipose Stem Cells and Adipocytes: Evidence of Cell Plasticity

    Get PDF
    INTRODUCTION: Previous studies highlight a complex relationship between lineage and phenotype for adipose tissue macrophages (ATMs), adipose stem cells (ASCs), and adipocytes, suggesting a high degree of plasticity of these cells. In the present study, using a novel co-culture system, we further characterized the interaction between ATMs, ASCs and adipocytes. RESEARCH DESIGN AND METHODS: Human adipocytes and the stromal vascular fraction containing ATMs and ASCs were isolated from human adipose tissue and co-cultured for 24 hours. FACS was used to characterize ATMs and ASCs before and after co-culture. Preadipocytes generated after co-culture were characterized by immunostaining for DLK (preadipocytes), CD14 and CD68 (ATMs), CD34 (ASCs), and Nile Red staining for lipid drops. qRT-PCR was used to quantify adipogenic markers such as C/EBPα and PPARγ. A novel fluorescent nanobead lineage tracing method was utilized before co-culture where fluorescent nanobeads were internalized by CD68 (+) ATMs. RESULTS: Co-culture of adipocytes with ATMs and ASCs increased the formation of new preadipocytes, thereby increasing lipid accumulation and C/EBPα and PPARγ gene expression. Preadipocytes originating after co-culture were positive for markers of preadipocytes, ATMs and ASCs. Moreover, fluorescent nanobeads were internalized by ATMs before co-culture and the new preadipocytes formed after co-culture also contained fluorescent nanobeads, suggesting that new preadipocytes originated in part from ATMs. The formation of CD34(+)/CD68(+)/DLK (+) cell spheres supported the interaction of ATMs, ASCs and preadipocytes. CONCLUSIONS: Cross-talk between adipocytes, ATMs and ASCs promotes preadipocyte formation. The regulation of this novel adipogenic pathway involves differentiation of ATMs to preadipocytes. The presence of CD34(+)/CD68(+)/DLK(+) cells grouped in spheres suggest that paracrine interactions between these cell types plays an important role in the generation and proliferation of new preadipocytes. This phenomenon may reflect the in vivo plasticity of adipose tissue in which ATMs play an additional role during inflammation and other disease states. Understanding this novel pathway could influence adipogenesis, leading to new treatments for obesity, inflammation, and type 2 diabetes

    Adipocytokines and CD34+ Progenitor Cells in Alzheimer's Disease

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) and atherosclerosis share common vascular risk factors such as arterial hypertension and hypercholesterolemia. Adipocytokines and CD34(+) progenitor cells are associated with the progression and prognosis of atherosclerotic diseases. Their role in AD is not adequately elucidated. METHODS AND FINDINGS: In the present study, we measured in 41 patients with early AD and 37 age- and weight-matched healthy controls blood concentrations of adiponectin and leptin by enzyme linked immunoabsorbent assay and of CD34(+) progenitor cells using flow cytometry. We found significantly lower plasma levels of leptin in AD patients compared with the controls, whereas plasma levels of adiponectin did not show any significant differences (AD vs. control (mean ± SD): leptin:8.9 ± 5.6 ng/mL vs.16.3 ± 15.5 ng/mL;P = 0.038; adiponectin:18.5 ± 18.1 µg/mL vs.16.7 ± 8.9 µg/mL;P = 0.641). In contrast, circulating CD34(+) cells were significantly upregulated in AD patients (mean absolute cell count ± SD:253 ± 51 vs. 203 ± 37; P = 0.02) and showed an inverse correlation with plasma levels of leptin (r =  -0.248; P = 0.037). In logistic regression analysis, decreased leptin concentration (P = 0.021) and increased number of CD34(+) cells (P = 0.036) were both significantly associated with the presence of AD. According to multifactorial analysis of covariance, leptin serum levels were a significant independent predictor for the number of CD34(+) cells (P = 0.002). CONCLUSIONS: Our findings suggest that low plasma levels of leptin and increased numbers of CD34(+) progenitor cells are both associated with AD. In addition, the results of our study provide first evidence that increased leptin plasma levels are associated with a reduced number of CD34(+) progenitor cells in AD patients. These findings point towards a combined involvement of leptin and CD34(+) progenitor cells in the pathogenesis of AD. Thus, plasma levels of leptin and circulating CD34(+) progenitor cells could represent an important molecular link between atherosclerotic diseases and AD. Further studies should clarify the pathophysiological role of both adipocytokines and progenitor cells in AD and possible diagnostic and therapeutic applications
    • …
    corecore