576 research outputs found

    The fallacy of enrolling only high-risk subjects in cancer prevention trials: Is there a "free lunch"?

    Get PDF
    BACKGROUND: There is a common belief that most cancer prevention trials should be restricted to high-risk subjects in order to increase statistical power. This strategy is appropriate if the ultimate target population is subjects at the same high-risk. However if the target population is the general population, three assumptions may underlie the decision to enroll high-risk subject instead of average-risk subjects from the general population: higher statistical power for the same sample size, lower costs for the same power and type I error, and a correct ratio of benefits to harms. We critically investigate the plausibility of these assumptions. METHODS: We considered each assumption in the context of a simple example. We investigated statistical power for fixed sample size when the investigators assume that relative risk is invariant over risk group, but when, in reality, risk difference is invariant over risk groups. We investigated possible costs when a trial of high-risk subjects has the same power and type I error as a larger trial of average-risk subjects from the general population. We investigated the ratios of benefit to harms when extrapolating from high-risk to average-risk subjects. RESULTS: Appearances here are misleading. First, the increase in statistical power with a trial of high-risk subjects rather than the same number of average-risk subjects from the general population assumes that the relative risk is the same for high-risk and average-risk subjects. However, if the absolute risk difference rather than the relative risk were the same, the power can be less with the high-risk subjects. In the analysis of data from a cancer prevention trial, we found that invariance of absolute risk difference over risk groups was nearly as plausible as invariance of relative risk over risk groups. Therefore a priori assumptions of constant relative risk across risk groups are not robust, limiting extrapolation of estimates of benefit to the general population. Second, a trial of high-risk subjects may cost more than a larger trial of average risk subjects with the same power and type I error because of additional recruitment and diagnostic testing to identify high-risk subjects. Third, the ratio of benefits to harms may be more favorable in high-risk persons than in average-risk persons in the general population, which means that extrapolating this ratio to the general population would be misleading. Thus there is no free lunch when using a trial of high-risk subjects to extrapolate results to the general population. CONCLUSION: Unless the intervention is targeted to only high-risk subjects, cancer prevention trials should be implemented in the general population

    A Unifying Framework for Evaluating the Predictive Power of Genetic Variants Based on the Level of Heritability Explained

    Get PDF
    An increasing number of genetic variants have been identified for many complex diseases. However, it is controversial whether risk prediction based on genomic profiles will be useful clinically. Appropriate statistical measures to evaluate the performance of genetic risk prediction models are required. Previous studies have mainly focused on the use of the area under the receiver operating characteristic (ROC) curve, or AUC, to judge the predictive value of genetic tests. However, AUC has its limitations and should be complemented by other measures. In this study, we develop a novel unifying statistical framework that connects a large variety of predictive indices together. We showed that, given the overall disease probability and the level of variance in total liability (or heritability) explained by the genetic variants, we can estimate analytically a large variety of prediction metrics, for example the AUC, the mean risk difference between cases and non-cases, the net reclassification improvement (ability to reclassify people into high- and low-risk categories), the proportion of cases explained by a specific percentile of population at the highest risk, the variance of predicted risks, and the risk at any percentile. We also demonstrate how to construct graphs to visualize the performance of risk models, such as the ROC curve, the density of risks, and the predictiveness curve (disease risk plotted against risk percentile). The results from simulations match very well with our theoretical estimates. Finally we apply the methodology to nine complex diseases, evaluating the predictive power of genetic tests based on known susceptibility variants for each trait

    Expanding the perspective of translational medicine: the value of observational data

    Get PDF
    In 2003, the Journal of Translational Medicine was launched to foster the publication of high quality research in both "bench-to-bedside" as well as ex vivo human observation. In spite of the success of several large-scale observational studies, e.g. Framingham Heart Study, the opportunity to expand upon the ex vivo human observation has remained limited within the field of translational medicine. We believe that this presents a significant opportunity that merits consideration in both the planning and analysis of large scale observational studies and can contribute greatly to expanding our approaches in translational medicin

    A reference relative time-scale as an alternative to chronological age for cohorts with long follow-up

    Get PDF
    Background: Epidemiologists have debated the appropriate time-scale for cohort survival studies; chronological age or time-on-study being two such time-scales. Importantly, assessment of risk factors may depend on the choice of time-scale. Recently, chronological or attained age has gained support but a case can be made for a ‘reference relative time-scale’ as an alternative which circumvents difficulties that arise with this and other scales. The reference relative time of an individual participant is the integral of a reference population hazard function between time of entry and time of exit of the individual. The objective here is to describe the reference relative time-scale, illustrate its use, make comparison with attained age by simulation and explain its relationship to modern and traditional epidemiologic methods. Results: A comparison was made between two models; a stratified Cox model with age as the time-scale versus an un-stratified Cox model using the reference relative time-scale. The illustrative comparison used a UK cohort of cotton workers, with differing ages at entry to the study, with accrual over a time period and with long follow-up. Additionally, exponential and Weibull models were fitted since the reference relative time-scale analysis need not be restricted to the Cox model. A simulation study showed that analysis using the reference relative time-scale and analysis using chronological age had very similar power to detect a significant risk factor and both were equally unbiased. Further, the analysis using the reference relative time-scale supported fully-parametric survival modelling and allowed percentile predictions and mortality curves to be constructed. Conclusions: The reference relative time-scale was a viable alternative to chronological age, led to simplification of the modelling process and possessed the defined features of a good time-scale as defined in reliability theory. The reference relative time-scale has several interpretations and provides a unifying concept that links contemporary approaches in survival and reliability analysis to the traditional epidemiologic methods of Poisson regression and standardised mortality ratios. The community of practitioners has not previously made this connection

    Premenopausal endogenous oestrogen levels and breast cancer risk: a meta-analysis.

    Get PDF
    BACKGROUND: Many of the established risk factors for breast cancer implicate circulating hormone levels in the aetiology of the disease. Increased levels of postmenopausal endogenous oestradiol (E2) have been found to increase the risk of breast cancer, but no such association has been confirmed in premenopausal women. We carried out a meta-analysis to summarise the available evidence in women before the menopause. METHODS: We identified seven prospective studies of premenopausal endogenous E2 and breast cancer risk, including 693 breast cancer cases. From each study we extracted odds ratios of breast cancer between quantiles of endogenous E2, or for unit or s.d. increases in (log transformed) E2, or (where odds ratios were unavailable) summary statistics for the distributions of E2 in breast cancer cases and unaffected controls. Estimates for a doubling of endogenous E2 were obtained from these extracted estimates, and random-effect meta-analysis was used to obtain a pooled estimate across the studies. RESULTS: Overall, we found weak evidence of a positive association between circulating E2 levels and the risk of breast cancer, with a doubling of E2 associated with an odds ratio of 1.10 (95% CI: 0.96, 1.27). CONCLUSION: Our findings are consistent with the hypothesis of a positive association between premenopausal endogenous E2 and breast cancer risk

    Sutherlandia frutescens: The meeting of science and traditional knowledge

    Get PDF
    Sutherlandia frutescens (L.) R.Br. (syn. Lessertia frutescens (L.) Goldblatt and J.C. Manning) is an indigenous medicinal plant extensively used in South Africa to treat a variety of health conditions. It is a fairly widespread, drought-resistant plant that grows in the Western, Eastern, and Northern Cape provinces and some areas of KwaZulu-Natal, varying in its chemical and genetic makeup across these geographic areas.1 Sutherlandia is widely used as a traditional medicine. Extensive scientific studies are being carried out on the safety, quality, and the efficacy of this medicinal plant to validate the traditional claims, elucidate the bioactive constituents, and conduct clinical trials. This has resulted in a unique situation in South Africa’s history, where traditional knowledge and science intersect to provide insight into this popular plant. This photoessay attempts to illustrate the interlinkage of science with the indigenous knowledge of traditional healers, the local knowledge of people who care for the sick, product development, and innovation agenda of the country as it relates to this plant.Web of Scienc

    Statistical Power of Model Selection Strategies for Genome-Wide Association Studies

    Get PDF
    Genome-wide association studies (GWAS) aim to identify genetic variants related to diseases by examining the associations between phenotypes and hundreds of thousands of genotyped markers. Because many genes are potentially involved in common diseases and a large number of markers are analyzed, it is crucial to devise an effective strategy to identify truly associated variants that have individual and/or interactive effects, while controlling false positives at the desired level. Although a number of model selection methods have been proposed in the literature, including marginal search, exhaustive search, and forward search, their relative performance has only been evaluated through limited simulations due to the lack of an analytical approach to calculating the power of these methods. This article develops a novel statistical approach for power calculation, derives accurate formulas for the power of different model selection strategies, and then uses the formulas to evaluate and compare these strategies in genetic model spaces. In contrast to previous studies, our theoretical framework allows for random genotypes, correlations among test statistics, and a false-positive control based on GWAS practice. After the accuracy of our analytical results is validated through simulations, they are utilized to systematically evaluate and compare the performance of these strategies in a wide class of genetic models. For a specific genetic model, our results clearly reveal how different factors, such as effect size, allele frequency, and interaction, jointly affect the statistical power of each strategy. An example is provided for the application of our approach to empirical research. The statistical approach used in our derivations is general and can be employed to address the model selection problems in other random predictor settings. We have developed an R package markerSearchPower to implement our formulas, which can be downloaded from the Comprehensive R Archive Network (CRAN) or http://bioinformatics.med.yale.edu/group/

    The utility of ductal lavage in breast cancer detection and risk assessment

    Get PDF
    Ductal lavage (DL) permits noninvasive retrieval of epithelial cells from the breast. Clinical development of this technique has been fueled largely by its potential, as yet unproven, to improve detection of breast cancer and definition of individual risk for development of breast cancer. Early studies demonstrate the feasibility of performing this technique, provide data on cellular yield and findings, and demonstrate the ability to measure molecular markers in DL fluid. However, the sensitivity and specificity of DL for the detection of breast cancer remains unknown, as does the significance of atypia, particularly mild atypia, when found in DL fluid. Although DL appears safe and the device is approved by the US Food and Drug Administration, DL is still best utilized in the setting of clinical trials designed to resolve issues of sensitivity, specificity, and localization
    corecore