13 research outputs found

    They might be giants: Luminosity class, planet occurrence, and planetmetallicity relation of the coolest kepler target stars

    Get PDF
    We estimate the stellar parameters of late K- and early M-type Kepler target stars. We obtain medium-resolution visible spectra of 382 stars with KP - J > 2 (≃K5 and later spectral type). We determine luminosity class by comparing the strength of gravity-sensitive indices (CaH, K I, Ca II, and Na I) to their strength in a sample of stars of known luminosity class. We find that giants constitute 96% ± 1% of the bright (K P < 14) Kepler target stars, and 7% ± 3% of dim (K P > 14) stars, significantly higher than fractions based on the stellar parameters quoted in the Kepler Input Catalog (KIC). The KIC effective temperatures are systematically (110+15 - 35K) higher than temperatures we determine from fitting our spectra to PHOENIX stellar models. Through Monte Carlo simulations of the Kepler exoplanet candidate population, we find a planet occurrence of 0.36 ± 0.08 when giant stars are properly removed, somewhat higher than when a KIC log g > 4 criterion is used (0.27 ± 0.05). Last, we show that there is no significant difference in g - r color (a probe of metallicity) between late-type Kepler stars with transiting Earth-to-Neptune-size exoplanet candidates and dwarf stars with no detected transits. We show that a previous claimed offset between these two populations is most likely an artifact of including a large number of misidentified giants

    Prospecting in late-type dwarfs: A calibration of infrared and visible spectroscopic metallicities of late K and M dwarfs spanning 1.5 dex

    Get PDF
    Knowledge of late K and M dwarf metallicities can be used to guide planet searches and constrain planet formation models. However, the determination of metallicities of late-type stars is difficult because visible wavelength spectra of their cool atmospheres contain many overlapping absorption lines, preventing the measurement of equivalent widths. We present new methods, and improved calibrations of existing methods, to determine metallicities of late K and M dwarfs from moderate resolution (1300 -0.5, but are less useful for more metal-poor stars

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    The CARMENES search for exoplanets around M dwarfs: Two planets on opposite sides of the radius gap transiting the nearby M dwarf LTT 3780

    Get PDF
    We present the discovery and characterisation of two transiting planets observed by the Transiting Exoplanet Survey Satellite (TESS) orbiting the nearby (d∗ ≈ 22 pc), bright (J ≈ 9 mag) M3.5 dwarf LTT 3780 (TOI-732). We confirm both planets and their association with LTT 3780 via ground-based photometry and determine their masses using precise radial velocities measured with the CARMENES spectrograph. Precise stellar parameters determined from CARMENES high-resolution spectra confirm that LTT 3780 is a mid-M dwarf with an effective temperature of Teff = 3360 ± 51 K, a surface gravity of log g∗ = 4.81 ± 0.04 (cgs), and an iron abundance of [Fe/H] = 0.09 ± 0.16 dex, with an inferred mass of M∗ = 0.379 ± 0.016M· and a radius of R∗ = 0.382 ± 0.012R·. The ultra-short-period planet LTT 3780 b (Pb = 0.77 d) with a radius of 1.35-0.06+0.06 R·, a mass of 2.34-0.23+0.24 M·, and a bulk density of 5.24-0.81+0.94 g cm-3 joins the population of Earth-size planets with rocky, terrestrial composition. The outer planet, LTT 3780 c, with an orbital period of 12.25 d, radius of 2.42-0.10+0.10 R·, mass of 6.29-0.61+0.63 M·, and mean density of 2.45-0.37+0.44 g cm-3 belongs to the population of dense sub-Neptunes. With the two planets located on opposite sides of the radius gap, this planetary system is anexcellent target for testing planetary formation, evolution, and atmospheric models. In particular, LTT 3780 c is an ideal object for atmospheric studies with the James Webb Space Telescope (JWST)

    TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    Stars and planetary system

    TOI-431/HIP 26013: A super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    We present the bright (Vmag = 9.12), multiplanet system TOI-431, characterized with photometry and radial velocities (RVs). We estimate the stellar rotation period to be 30.5 ± 0.7 d using archival photometry and RVs. Transiting Exoplanet Survey Satellite (TESS) objects of Interest (TOI)-431 b is a super-Earth with a period of 0.49 d, a radius of 1.28 ± 0.04 R, a mass of 3.07 ± 0.35 M, and a density of 8.0 ± 1.0 g cm-3; TOI-431 d is a sub-Neptune with a period of 12.46 d, a radius of 3.29 ± 0.09 R, a mass of 9.90+1.53-1.49 M, and a density of 1.36 ± 0.25 g cm-3. We find a third planet, TOI-431 c, in the High Accuracy Radial velocity Planet Searcher RV data, but it is not seen to transit in the TESS light curves. It has an Msin i of 2.83+0.41-0.34 M, and a period of 4.85 d. TOI-431 d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterization, while the super-Earth TOI-431 b may be a stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431 b is a prime TESS discovery for the study of rocky planet phase curves

    Below One Earth: The Detection, Formation, and Properties of Subterrestrial Worlds

    No full text
    corecore