178 research outputs found
Classical and Quantum Analysis of Repulsive Singularities in Four Dimensional Extended Supergravity
Non--minimal repulsive singularities (``repulsons'') in extended supergravity
theories are investigated. The short distance antigravity properties of the
repulsons are tested at the classical and the quantum level by a scalar
test--particle. Using a partial wave expansion it is shown that the particle
gets totally reflected at the origin. A high frequency incoming particle
undergoes a phase shift of . However, the phase shift for a
low--frequency particle depends upon the physical data of the repulson. The
curvature singularity at a finite distance turns out to be transparent
for the scalar test--particle and the coordinate singularity at the origin
serves as a repulsive barrier at which particles bounce off.Comment: 20 pages, 14 figure
Heuristic Models of Two-Fermion Relativistic Systems with Field-Type Interaction
We use the chain of simple heuristic expedients to obtain perturbative and
exactly solvable relativistic spectra for a family of two-fermionic bound
systems with Coulomb-like interaction. In the case of electromagnetic
interaction the spectrum coincides up to the second order in a coupling
constant with that following from the quantum electrodynamics. Discrepancy
occurs only for S-states which is the well-known difficulty in the bound-state
problem. The confinement interaction is considered too.
PACS number(s): 03.65.Pm, 03.65.Ge, 12.39.PnComment: 16 pages, LaTeX 2.0
Black Holes and Flop Transitions in M-Theory on Calabi-Yau Threefolds
We present fivedimensional extreme black hole solutions of M-theory
compactified on Calabi-Yau threefolds and study these solutions in the context
of flop transitions in the extended Kahler cone. In particular we consider a
specific model and present black hole solutions, breaking half of N=2
supersymmetry, in two regions of the extended Kahler cone, which are connected
by a flop transition. The conditions necessary to match both solutions at the
flop transition are analysed. Finally we also discuss the conditions to obtain
massless black holes at the flop transition.Comment: 19 pp, LaTe
A relativistic action-at-a-distance description of gravitational interactions?
It is shown that certain aspects of gravitation may be described using a
relativistic action-at-a-distance formulation. The equations of motion of the
model presented are invariant under Lorentz transformations and agree with the
equations of Einstein's theory of General Relativity, at the first
Post-Newtonian approximation, for any number of interacting point masses
The Kahler Cone as Cosmic Censor
M-theory effects prevent five-dimensional domain-wall and black-hole
solutions from developing curvature singularities. While so far this analysis
was performed for particular models, we now present a model-independent proof
that these solutions do not have naked singularities as long as the Kahler
moduli take values inside the extended Kahler cone. As a by-product we obtain
information on the regularity of the Kahler-cone metric at boundaries of the
Kahler cone and derive relations between the geometry of moduli space and
space-time.Comment: 21 pages, 1 figure. Improved discussion of the relation between
Kahler moduli and five-dimensional scalars. No changes in the conclusion
AdS and stabilized extra dimensions in multidimensional gravitational models with nonlinear scalar curvature terms 1/R and R^4
We study multidimensional gravitational models with scalar curvature
nonlinearities of the type 1/R and R^4. It is assumed that the corresponding
higher dimensional spacetime manifolds undergo a spontaneous compactification
to manifolds with warped product structure. Special attention is paid to the
stability of the extra-dimensional factor spaces. It is shown that for certain
parameter regions the systems allow for a freezing stabilization of these
spaces. In particular, we find for the 1/R model that configurations with
stabilized extra dimensions do not provide a late-time acceleration (they are
AdS), whereas the solution branch which allows for accelerated expansion (the
dS branch) is incompatible with stabilized factor spaces. In the case of the
R^4 model, we obtain that the stability region in parameter space depends on
the total dimension D=dim(M) of the higher dimensional spacetime M. For D>8 the
stability region consists of a single (absolutely stable) sector which is
shielded from a conformal singularity (and an antigravity sector beyond it) by
a potential barrier of infinite height and width. This sector is smoothly
connected with the stability region of a curvature-linear model. For D<8 an
additional (metastable) sector exists which is separated from the conformal
singularity by a potential barrier of finite height and width so that systems
in this sector are prone to collapse into the conformal singularity. This
second sector is not smoothly connected with the first (absolutely stable) one.
Several limiting cases and the possibility for inflation are discussed for the
R^4 model.Comment: 28 pages, minor cosmetic improvements, Refs. added; to appear in
Class. Quantum Gra
Early epigenetic downregulation of microRNA-192 expression promotes pancreatic cancer progression
Pancreatic ductal adenocarcinoma (PDAC) is characterized by very early metastasis, suggesting the hypothesis that metastasis-associated changes may occur prior to actual tumor formation. In this study, we identified miR-192 as an epigenetically regulated suppressor gene with predictive value in this disease. miR-192 was downregulated by promoter methylation in both PDAC and chronic pancreatitis, the latter of which is a major risk factor for the development of PDAC. Functional studies in vitro and in vivo in mouse models of PDAC showed that overexpression of miR-192 was sufficient to reduce cell proliferation and invasion. Mechanistic analyses correlated changes in miR-192 promoter methylation and expression with epithelial–mesenchymal transition. Cell proliferation and invasion were linked to altered expression of the miR-192 target gene SERPINE1 that is encoding the protein plasminogen activator inhibitor-1 (PAI-1), an established regulator of these properties in PDAC cells. Notably, our data suggested that invasive capacity was altered even before neoplastic transformation occurred, as triggered by miR-192 downregulation. Overall, our results highlighted a role for miR-192 in explaining the early metastatic behavior of PDAC and suggested its relevance as a target to develop for early diagnostics and therapy. Cancer Res; 76(14); 4149–59. ©2016 AACR
The repulsive nature of naked singularities from the point of view of Quantum Mechanics
We use the Dirac equation coupled to a background metric to examine what
happens to quantum mechanical observables like the probability density and the
radial current in the vicinity of a naked singularity of the
Reissner-Nordstr\"{o}m type. We find that the wave function of the Dirac
particle is regular in the point of the singularity. We show that the
probability density is exactly zero at the singularity reflecting
quantum-mechanically the repulsive nature of the naked singularity.
Furthermore, the surface integral of the radial current over a sphere in the
vicinity of the naked singularity turns out to be also zero.Comment: 11 page
Dirac's Observables for the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge
We define the {\it rest-frame instant form} of tetrad gravity restricted to
Christodoulou-Klainermann spacetimes. After a study of the Hamiltonian group of
gauge transformations generated by the 14 first class constraints of the
theory, we define and solve the multitemporal equations associated with the
rotation and space diffeomorphism constraints, finding how the cotriads and
their momenta depend on the corresponding gauge variables. This allows to find
quasi-Shanmugadhasan canonical transformation to the class of 3-orthogonal
gauges and to find the Dirac observables for superspace in these gauges.
The construction of the explicit form of the transformation and of the
solution of the rotation and supermomentum constraints is reduced to solve a
system of elliptic linear and quasi-linear partial differential equations. We
then show that the superhamiltonian constraint becomes the Lichnerowicz
equation for the conformal factor of the 3-metric and that the last gauge
variable is the momentum conjugated to the conformal factor. The gauge
transformations generated by the superhamiltonian constraint perform the
transitions among the allowed foliations of spacetime, so that the theory is
independent from its 3+1 splittings. In the special 3-orthogonal gauge defined
by the vanishing of the conformal factor momentum we determine the final Dirac
observables for the gravitational field even if we are not able to solve the
Lichnerowicz equation. The final Hamiltonian is the weak ADM energy restricted
to this completely fixed gauge.Comment: RevTeX file, 141 page
- …