7 research outputs found

    Frequency‐dependent modulation of neural oscillations across the gait cycle

    Get PDF
    : Balance and walking are fundamental to support common daily activities. Relatively accurate characterizations of normal and impaired gait features were attained at the kinematic and muscular levels. Conversely, the neural processes underlying gait dynamics still need to be elucidated. To shed light on gait-related modulations of neural activity, we collected high-density electroencephalography (hdEEG) signals and ankle acceleration data in young healthy participants during treadmill walking. We used the ankle acceleration data to segment each gait cycle in four phases: initial double support, right leg swing, final double support, left leg swing. Then, we processed hdEEG signals to extract neural oscillations in alpha, beta, and gamma bands, and examined event-related desynchronization/synchronization (ERD/ERS) across gait phases. Our results showed that ERD/ERS modulations for alpha, beta, and gamma bands were strongest in the primary sensorimotor cortex (M1), but were also found in premotor cortex, thalamus and cerebellum. We observed a modulation of neural oscillations across gait phases in M1 and cerebellum, and an interaction between frequency band and gait phase in premotor cortex and thalamus. Furthermore, an ERD/ERS lateralization effect was present in M1 for the alpha and beta bands, and in the cerebellum for the beta and gamma bands. Overall, our findings demonstrate that an electrophysiological source imaging approach based on hdEEG can be used to investigate dynamic neural processes of gait control. Future work on the development of mobile hdEEG-based brain-body imaging platforms may enable overground walking investigations, with potential applications in the study of gait disorders

    fMRI data processing in MRTOOL: to what extent does anatomical registration affect the reliability of functional results?

    No full text
    Spatial registration is an essential step in the analysis of fMRI data because it enables between-subject analyses of brain activity, measured either during task performance or in the resting state. In this study, we investigated how anatomical registration with MRTOOL affects the reliability of task-related fMRI activity. We used as a benchmark the results from two other spatial registration methods implemented in SPM12: the Unified Segmentation algorithm and the DARTEL toolbox. Structural alignment accuracy and the impact on functional activation maps were assessed with high-resolution T1-weighted images and a set of task-related functional volumes acquired in 10 healthy volunteers. Our findings confirmed that anatomical registration is a crucial step in fMRI data processing, contributing significantly to the total inter-subject variance of the activation maps. MRTOOL and DARTEL provided greater registration accuracy than Unified Segmentation. Although DARTEL had superior gray matter and white matter tissue alignment than MRTOOL, there were no significant differences between DARTEL and MRTOOL in test-retest reliability. Likewise, we found only limited differences in BOLD activation morphology between MRTOOL and DARTEL. The test-retest reliability of task-related responses was comparable between MRTOOL and DARTEL, and both proved superior to Unified Segmentation. We conclude that MRTOOL, which is suitable for single-subject processing of structural and functional MR images, is a valid alternative to other SPM12-based approaches that are intended for group analysis. MRTOOL now includes a normalization module for fMRI data and is freely available to the scientific community.status: publishe

    Spatial localization of EEG electrodes using 3D scanning

    No full text
    OBJECTIVE: A reliable reconstruction of neural activity using high-density electroencephalography (EEG) requires an accurate spatial localization of EEG electrodes aligned to the structural magnetic resonance (MR) image of an individual's head. Current technologies for electrode positioning, such as electromagnetic digitization, are yet characterized by non-negligible localization and co-registration errors. In this study, we propose an automated method for spatial localization of EEG electrodes using 3D scanning, a non-invasive and easy-to-use technology with potential applications in clinical settings. APPROACH: Our method consists of three main steps: (1) the 3D scan is ambient light-corrected and spatially aligned to the head surface extracted from the anatomical MR image; (2) electrode positions are identified by segmenting the 3D scan based on predefined colour and topological properties; (3) electrode labelling is performed by aligning an EEG montage template to the electrode positions. The performance of the method was assessed on data collected in eight participants wearing high-density EEG caps with 128 sensors, from three different manufacturers. We estimated the co-registration error using the distance between the MR-based head shape and the closest 3D scan points. Also, we quantified the positioning error using the distance between the detected electrode positions and the corresponding locations manually selected on the 3D scan data. MAIN RESULTS: For all participants and EEG caps, we obtained a median error of co-registration below 3.0 mm and of spatial localization below 1.4 mm. The method based on 3D scanning data was significantly more precise compared to the electromagnetic digitization technique, and the total time required for obtaining electrode positions was reduced by about half. SIGNIFICANCE: We have introduced a method to automatically detect EEG electrodes based on 3D scanning information. We believe that our work can contribute to a more effective, reliable and widespread use of high-density EEG as brain imaging tool.status: publishe

    Detection of Resting-State Functional Connectivity from High-Density Electroencephalography Data: Impact of Head Modeling Strategies

    No full text
    Recent technological advances have been permitted to use high-density electroencephalography (hdEEG) for the estimation of functional connectivity and the mapping of resting-state networks (RSNs). The reliable estimate of activity and connectivity from hdEEG data relies on the creation of an accurate head model, defining how neural currents propagate from the cortex to the sensors placed over the scalp. To the best of our knowledge, no study has been conducted yet to systematically test to what extent head modeling accuracy impacts on EEG-RSN reconstruction. To address this question, we used 256-channel hdEEG data collected in a group of young healthy participants at rest. We first estimated functional connectivity in EEG-RSNs by means of band-limited power envelope correlations, using neural activity estimated with an optimized analysis workflow. Then, we defined a series of head models with different levels of complexity, specifically testing the effect of different electrode positioning techniques and head tissue segmentation methods. We observed that robust EEG-RSNs can be obtained using a realistic head model, and that inaccuracies due to head tissue segmentation impact on RSN reconstruction more than those due to electrode positioning. Additionally, we found that EEG-RSN robustness to head model variations had space and frequency specificity. Overall, our results may contribute to defining a benchmark for assessing the reliability of hdEEG functional connectivity measures

    Assessing Neurokinematic and Neuromuscular Connectivity During Walking Using Mobile Brain-Body Imaging

    Get PDF
    Gait is a common but rather complex activity that supports mobility in daily life. It requires indeed sophisticated coordination of lower and upper limbs, controlled by the nervous system. The relationship between limb kinematics and muscular activity with neural activity, referred to as neurokinematic and neuromuscular connectivity (NKC/NMC) respectively, still needs to be elucidated. Recently developed analysis techniques for mobile high-density electroencephalography (hdEEG) recordings have enabled investigations of gait-related neural modulations at the brain level. To shed light on gait-related neurokinematic and neuromuscular connectivity patterns in the brain, we performed a mobile brain/body imaging (MoBI) study in young healthy participants. In each participant, we collected hdEEG signals and limb velocity/electromyography signals during treadmill walking. We reconstructed neural signals in the alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-50 Hz) frequency bands, and assessed the co-modulations of their power envelopes with myogenic/velocity envelopes. Our results showed that the myogenic signals have larger discriminative power in evaluating gait-related brain-body connectivity with respect to kinematic signals. A detailed analysis of neuromuscular connectivity patterns in the brain revealed robust responses in the alpha and beta bands over the lower limb representation in the primary sensorimotor cortex. There responses were largely contralateral with respect to the body sensor used for the analysis. By using a voxel-wise analysis of variance on the NMC images, we revealed clear modulations across body sensors; the variability across frequency bands was relatively lower, and below significance. Overall, our study demonstrates that a MoBI platform based on hdEEG can be used for the investigation of gait-related brain-body connectivity. Future studies might involve more complex walking conditions to gain a better understanding of fundamental neural processes associated with gait control, or might be conducted in individuals with neuromotor disorders to identify neural markers of abnormal gait
    corecore