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Gait is a common but rather complex activity that supports mobility in daily life. It
requires indeed sophisticated coordination of lower and upper limbs, controlled by
the nervous system. The relationship between limb kinematics and muscular activity
with neural activity, referred to as neurokinematic and neuromuscular connectivity
(NKC/NMC) respectively, still needs to be elucidated. Recently developed analysis
techniques for mobile high-density electroencephalography (hdEEG) recordings have
enabled investigations of gait-related neural modulations at the brain level. To shed light
on gait-related neurokinematic and neuromuscular connectivity patterns in the brain,
we performed a mobile brain/body imaging (MoBI) study in young healthy participants.
In each participant, we collected hdEEG signals and limb velocity/electromyography
signals during treadmill walking. We reconstructed neural signals in the alpha (8–13 Hz),
beta (13–30 Hz), and gamma (30–50 Hz) frequency bands, and assessed the co-
modulations of their power envelopes with myogenic/velocity envelopes. Our results
showed that the myogenic signals have larger discriminative power in evaluating gait-
related brain-body connectivity with respect to kinematic signals. A detailed analysis
of neuromuscular connectivity patterns in the brain revealed robust responses in the
alpha and beta bands over the lower limb representation in the primary sensorimotor
cortex. There responses were largely contralateral with respect to the body sensor used
for the analysis. By using a voxel-wise analysis of variance on the NMC images, we
revealed clear modulations across body sensors; the variability across frequency bands
was relatively lower, and below significance. Overall, our study demonstrates that a MoBI
platform based on hdEEG can be used for the investigation of gait-related brain-body
connectivity. Future studies might involve more complex walking conditions to gain a
better understanding of fundamental neural processes associated with gait control, or
might be conducted in individuals with neuromotor disorders to identify neural markers
of abnormal gait.

Keywords: electroencephalography (EEG), electromyography (EMG), mobile brain-body imaging (MoBI), gait
analysis, brain oscillations, motor control
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INTRODUCTION

Gait is a common but rather complex activity that supports
mobility in daily life. The successful performance of normal
gait relies on rhythmic steps of left and right lower limbs in
alternation, with arms and trunk providing stability and balance
(Vaughan, 2003). This is mediated by the musculoskeletal system
and requires sophisticated coordination of the nervous system
(Alamdari and Krovi, 2017). The involvement of cortical and
subcortical regions to support gait control has been documented
by studies using neuroimaging techniques such as functional
magnetic resonance imaging (fMRI), positron emission
tomography (PET), and single photon emission computer
tomography (SPECT) (Bakker et al., 2007a,b; Takakusaki,
2013, 2017; Hamacher et al., 2015). Electroencephalography
(EEG), which measures changes in scalp potentials associated
with neuronal electrical activity, can be used to directly
examine neural dynamics during gait. Specifically, wireless EEG
systems can be used in combination with kinematic and/or
electromyography (EMG) sensors placed over the limbs for
mobile brain/body imaging (MoBI) experiments (Jungnickel
et al., 2019). EEG-based MoBI platforms record body signals and
neural signals simultaneously, and can be useful for the study of
gait-related brain dynamics.

The analysis of gait usually requires precise information
on limb kinematics (Jasiewicz et al., 2006; Kotiadis et al.,
2010). Normal gait consists of recurrent cycles that contain
consecutive stance and swing phases for each lower limb
(Vaughan, 2003; Schmeltzpfenning and Brauner, 2013; Alamdari
and Krovi, 2017; Price et al., 2021). A stance phase starts
with the corresponding foot striking on the ground (i.e., heel
strike event) and ends with the toe of that foot detaching
the ground (i.e., toe off event). The subsequent swing phase
starts with the toe off event and ends with the heel strike
event, which moves the body forward. Since the lower limbs
move in alternation, the stance is further subdivided into
a single support period where only one foot is in contact
with the ground, and two double support periods, before
and after the single support period, where two feet are
supporting the weight of the body. These gait phases rely on
coordinated contractions of lower limb muscles, which can
be captured by surface EMG sensors (Cappellini et al., 2006;
Agostini et al., 2010; Bonnefoy-Mazure and Armand, 2015).
For instance, the vastus, the biceps femoris and the tibialis
anterior of a heel-striking leg show stronger EMG activity
during the double support phase to maintain the equilibrium
while allowing forward progression. The vastus contracts during
the initial part of the single support phase whereas the
gastrocnemius is active during the whole single support phase.
Also, the EMG signals of the tibialis anterior and the biceps
femoris are strong throughout and at the end of the swing
phase, respectively.

Gait-related EEG signals typically contain, in addition
to neural signals, relatively large ocular/movement/myogenic
artifacts. These artifacts can be effectively attenuated (Zhao
et al., 2021) or corrupted data segments can be excluded

(Gwin et al., 2011; Seeber et al., 2014, 2015; Nathan and
Contreras-Vidal, 2016; Wagner et al., 2016; Oliveira et al., 2017)
to ensure a reliable analysis of gait-related neural oscillations.
These neural oscillations are typically distinguished in delta
(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz),
and gamma (>30 Hz) oscillations. Several studies used EEG
recordings to evaluate modulations of specific neural oscillations
with respect to kinematic events and phases of the gait cycle.
For example, modulations of neural oscillations across the
gait cycle were found in EEG data collected using treadmill
walking (Gwin et al., 2011). Further EEG studies on gait also
differentiated the functional roles of neural modulations in
beta, low gamma and high gamma bands (Seeber et al., 2014,
2015). Other studies reported distinct beta band oscillatory
networks in subserving gait adaptation (Bulea et al., 2015),
and suggested that the prefrontal, posterior parietal, and
sensorimotor network activity underlies speed control during
walking (Wagner et al., 2016). More recent studies observed
correlates of power reduction in alpha and beta oscillations with
increase of gait speed (Nordin et al., 2020), as well as gait-phase-
independent neural activity during voluntary gait modifications
(Yokoyama et al., 2021).

It should be considered that EEG-based MoBI platforms
permit not only the study of brain activity during movement,
but also of its relationships with body signals. Associations
between brain and body signals are typically referred to as
brain-body connectivity. Coherence analysis (Shaw, 1984) has
been the first technique proposed to assess the link between
movement and EEG dynamics, or neurokinematic connectivity
(NKC) (Bourguignon et al., 2011, 2015; Piitulainen et al.,
2013), and between EMG and EEG dynamics, or neuromuscular
connectivity (NMC) (Bayraktaroglu et al., 2011; Gwin and Ferris,
2012). The first NKC and NMC experiments were conducted
in controlled settings and mainly involved the contraction of
limb muscles, but subsequent studies also extended such analysis
to treadmill and free walking conditions (Petersen et al., 2012;
Roeder et al., 2018). Mobile EEG measures are characterized
by a larger contribution of movement-related artifacts, thereby
reducing the sensitivity of coherence analyses for NKC and NMC
assessment (Bourguignon et al., 2011, 2015; Bayraktaroglu et al.,
2013). To address this problem, other brain-body connectivity
measures were proposed, which rely on the analysis of temporal
correlations between neural oscillations and peripheral signal
envelopes (Bayraktaroglu et al., 2013; Dähne et al., 2014; Tanaka
and Saga, 2019; Watanabe et al., 2020). It should also be noted
that all the studies conducted so far quantified the relationships
of body signals with EEG signals at the scalp level.

Notably, recent developments in the field of EEG data
acquisition and analysis have permitted to perform a reliable
source localization, i.e., the estimate of neural activity in the
brain (Michel and Murray, 2012). Particularly, it has been shown
that the application of high-density EEG (hdEEG) montages
with more than hundred electrodes yields a fine spatial sampling
of scalp potentials (Liu et al., 2015; Song et al., 2015; Seeck
et al., 2017); furthermore, the implementation of advanced
artifact attenuation approaches (Zhao et al., 2021) and head
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modeling solutions (Taberna et al., 2019a,b, 2021) permits a
more accurate characterization of neural oscillations in the
source space from hdEEG recordings. In a recent study, we
have demonstrated that the application of these advanced
solutions on hdEEG data collected in walking participants
can support a finer characterization of neural oscillations in
different phases of the gait cycle (Zhao et al., 2022). Yet,
it remains to be evaluated if the increased spatial specificity
brought by hdEEG in neuronal signal reconstruction can
support the reliable assessment of gait-related NKC and NMC
in the source space, and if this approach provides additional
information as compared to previous studies that quantified
NKC and NMC at the sensor level (Petersen et al., 2012;
Roeder et al., 2018). To address these questions, we conducted
an experiment in young healthy participants using a hdEEG-
based MoBI platform and assessed gait-related brain-body
connectivity in the source space. More specifically, we aimed
to test whether brain-body connectivity is characterized by
specific spatial patterns depending on the specific body sensors
and the neural oscillations of interest, and to evaluate if the
brain regions showing robust brain-body connectivity are those
typically related to motor execution, or also to motor planning
and coordination.

MATERIALS AND METHODS

In this study, we designed and used a MoBI platform to
collect myogenic and kinematic body signals, as well as hdEEG
recordings in a group of healthy participants during treadmill
walking. With the resulting MoBI data, we evaluated the
discriminative power of the myogenic and kinematic signals
by analyzing temporal correlations of the signal envelopes
across body sensors. We also assessed the frequency-wise NKC
and NMC in selected regions of interest (ROIs) across body
sensors by calculating correlations of the envelopes of body
signals with the power of the neural signals in each frequency,
and evaluated the connectivity levels separately for alpha (8–
13 Hz), beta (13–30 Hz), and gamma (30–50 Hz) frequency
bands. We finally extended the analysis to the whole brain
and examined the connectivity images in the source space
across body sensors.

Experiment and Participants
The experiment included 24 young, healthy participants (14
females and 10 males, age 22–31 years), who were not affected
by any brain-related injury/disease or any other medical
condition. The experimental procedures were approved by
the Ethics Committee of the Liguria Region, Italy (reference:
238/2019) and were conducted in accordance with the 1964
Helsinki declaration and its later amendments. An informed
consent was obtained from each participant. The participant
was equipped with the MoBI platform described below, and
was asked to walk with normal and constant speed during
the experiment (Gwin et al., 2011; Wagner et al., 2016)
on a Forcelink treadmill (Motek Medical B.V., Houten,
Netherlands). Data collection started after familiarization

with the treadmill walking. The task design consisted
of three blocks of walk, each lasting 2 min, with 1-min
rest in between.

Mobile Brain-Body Imaging Platform
The MoBI platform consisted of three main parts: the backpack;
the wireless body sensors; and the base station (Figure 1A).
(1) The backpack weighted about 1.7 kg and contained an
ActiCHamp EEG amplifier (Brain Products GmbH, Gilching,
Germany) with 128 channels, a Surface Go tablet (Microsoft
Corporation, Redmond, WA, United States) and a light-weighted
battery. The amplifier, powered by the battery, was connected
to the tablet for reliable data storage. The EEG sensors, which
were integrated in a cap with standard 10/20 montage, were
connected to the subject’s scalp using a conductive gel. (2) The
wireless body sensors were attached on the skin of the participant
and permitted to collect simultaneous 3-axis acceleration and
EMG signals. (3) The base station contained a 16-channel Trigno
base (Delsys Inc., Natick, MA, United States) and a laptop. The
Trigno base was used to receive acceleration/EMG data from
the wireless sensors and to transfer them to the laptop through
a USB cable connection. The laptop also controlled the Trigno
base and the EEG data acquisition tablet for experimental flow
management. A pulse signal (Figure 1B) was sent from the tablet
to one of the auxiliary channels of the hdEEG amplifier and
to one of the wireless sensors for an offline synchronization of
the two systems. The temporal difference between the two was
quantified using cross correlation (Supplementary Figure 1a).
The temporal jitters after synchronization were below 5 ms
(Supplementary Figure 1b).

Data Collection
During the experiment, we collected 128-channel hdEEG signals
at 1 kHz sampling rate, using the FCz electrode as physical
reference. In addition, we collected 3-axis acceleration signals and
EMG signals, respectively at 148 Hz and 2 kHz sampling rate,
using wireless body sensors over the following bilateral muscles:
vastus medialis, biceps femoris, tibialis anterior, gastrocnemius;
using the same system, we also measured 3-axis acceleration
signals from body sensors placed over the left and right ankles
(Supplementary Figure 2). These anatomical locations were
specifically chosen as they were reported to be related to walking
movements (Winter and Yack, 1987; Liu et al., 2008; Bonnefoy-
Mazure and Armand, 2015). The sensor positioning was
performed in compliance with published guidelines (Hermens
et al., 2000). Immediately after the experiment, we acquired a
3D scan of the participant’s head using an iPad (Apple Inc.,
Cupertino, CA, United States) equipped with a Structure Sensor
camera (Occipital Inc., Boulder, CO, United States), to extract the
locations of the hdEEG electrodes (Taberna et al., 2019a,b).

In a separate session, the structural MR image of each
participant’s head was collected with a 3T Philips Achieva
MR scanner (Philips Medical Systems, Best, Netherlands)
using a T1-weighted magnetization-prepared rapid-
acquisition gradient-echo (MP-RAGE) sequence. The scanning
parameters were: repetition time (TR) = 9.6 ms, echo time
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FIGURE 1 | Diagram of the mobile brain-body imaging platform. (A) The platform consists of three parts: a backpack, a set of wireless body sensors, and a base
station. The backpack contains a high-density EEG (hdEEG) amplifier, an EEG data acquisition tablet, and a light-weighted battery for powering the amplifier. During
the experiment, a participant wears a hdEEG cap that is connected to the EEG amplifier in the backpack. The amplifier is connected to a tablet in the backpack for
reliable EEG data recording. The EEG recording software on the tablet is remotely controlled by a laptop via Wi-Fi connection. The laptop is also connected to a
wireless sensor base that receives EMG and acceleration data from sensors attached on the participant. The EEG system and wireless sensor system are
synchronized by receiving a synchronization signal from the tablet through an auxiliary channel and one of the wireless sensors, respectively. (B) An example of
synchronization signals recorded from the two systems.

(TE) = 4.6 ms, 160 coronal slices, 250×250 matrix, voxel
size = 0.98× 0.98× 1.2 mm3.

Analysis of Kinematic and
Electromyographic Data
For each participant, we estimated the velocities using the
integrals of left and right ankle total acceleration (Supplementary
Figure 3). Total ankle acceleration signal segments with stable
velocity were isolated and extracted to detect gait events and
gait cycles in line with previous kinematic studies (Jasiewicz
et al., 2006; Kotiadis et al., 2010). Accordingly, we detected the
following gait events: left heel strike (LHS), right heel strike
(RHS), left toe off (LTO), and right toe off (RTO) (Gwin et al.,
2011; Seeber et al., 2014; Wagner et al., 2016). A full gait cycle
was defined as the period between two adjacent left heel strikes
(Zhao et al., 2022).

We then extracted trial-averaged velocity envelopes and EMG
envelopes according to the acceleration signals and the EMG
signals from the sensors on the limbs. Specifically, for each

body sensor, the velocity was estimated from the integral of
the total acceleration signal; the EMG signals were digitally
filtered in the band [1–500] Hz and rectified (Türker, 1993;
Rainoldi et al., 2004; Halliday and Farmer, 2010). The velocity
envelopes and the EMG envelopes, as derived separately from
the Hilbert transformation of the velocity and processed EMG
signals, were resampled to 200 Hz, epoched based on the gait
cycles, standardized to gait cycle percentage according to the
corresponding RHS, LTO, and RTO events, and finally averaged
for each participant.

The two types of trial-averaged envelopes were plotted for
each body sensor as range curves (minimum to maximum
range, intra-quartile range, and median curve) to examine the
movements and the muscular activations of the limbs across the
gait cycle. The inter-dependence of the envelopes was quantified
using correlations across body sensors. The resulting correlation
values were transformed to z-values using the Fisher transform,
and then subject to one-sample t-tests to assess their statistical
significance. The z-values were also averaged across participants;
the resulting z-values were back-transformed to correlation

Frontiers in Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 912075

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-912075 May 30, 2022 Time: 19:3 # 5

Zhao et al. Brain-Body Connectivity During Walking

FIGURE 2 | Detection and analysis of gait cycles. (A) Gait cycles were defined based on two adjacent left heel strike (LHS) events, detected from the acceleration of
the left and right ankles. The acceleration data were also used to define right toe off (RTO), right heel strike (RHS), and left toe off (LTO) events. The lines denote the
median across participants; the colored areas denote the intra-quartile range; the areas with semi-transparent color denote the full-range (from minimum to
maximum) across participants. (B) Duration and number of gait cycles across participants.

FIGURE 3 | Velocity and EMG envelopes for sensors placed over selected muscles of the lower limbs. The muscles are the vastus medialis, biceps femoris, tibialis
anterior, and gastrocnemius. (A) Velocity envelopes in the gait cycles across participants. (B) EMG envelopes in the gait cycles across participants. The lines denote
the median across participants; the colored areas denote the intra-quartile range; the areas with semi-transparent color denote the full range (from minimum to
maximum) across participants. Red and blue colors are used to indicate results for the muscles in the left and right sides of the body, respectively. LHS, left heel
strike; RHS, right heel strike; LTO, left toe off; RTO, right toe off.
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FIGURE 4 | Correlation analysis of velocity and EMG envelopes. (A)
Correlations of velocity envelopes across body sensors. (B) Correlations of
EMG envelopes across body sensors. The results presented refer to the
average across participants. *pFDR < 0.05; **pFDR < 0.01; ***pFDR < 0.001.

values using the inverse Fisher transformation. These group-
level correlation values were used for visualization purposes.
Furthermore, the mean z-value and the maximum absolute
z-value across body sensors were calculated for each subject, and
the resulting values were visualized using box plots, separately for
each signal type (velocity/EMG envelopes).

Analysis of Neural Data
The hdEEG data analysis involved three main steps: EEG data
preprocessing, head model creation, neural signal reconstruction.
These steps will be described in the following sections.

FIGURE 5 | Inter-dependence of velocity and EMG envelopes across body
sensors. Box plots indicating (A) the mean absolute z-value and (B) the
maximum absolute z-value, for velocity and EMG envelopes, respectively.

Electroencephalography Data Preprocessing
We first corrected the bad channels in the hdEEG data (Guarnieri
et al., 2018), digitally filtered them in the frequency band
between 1 and 80 Hz and downsampled them to 200 Hz. Then,
we applied a multi-step blind source separation approach to
minimize the impact of ocular, movement and myogenic artifacts
in the mobile hdEEG data (Zhao et al., 2021). Specifically, we
attenuated the ocular artifacts by decomposing the hdEEG data
with deflation-FastICA (Hyvarinen, 1999) and removing the
components with maximum kurtosis over 5-s windows above 12;
then, we attenuated the movement artifacts by decomposing the
data with symmetric-FastICA (Hyvarinen, 1999) and removing
the resulting components with mean sample entropy over 20-s
windows below 0.8; finally, we attenuated the myogenic artifacts

Frontiers in Neuroscience | www.frontiersin.org 6 June 2022 | Volume 16 | Article 912075

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-912075 May 30, 2022 Time: 19:3 # 7

Zhao et al. Brain-Body Connectivity During Walking

by decomposing the data with independent vector analysis
(Anderson et al., 2011) and removing the components with power
in the [30–80 Hz] band larger than the power in the [1–30 Hz]
band. After artifact attenuation, we re-referenced the hdEEG
signals using the average reference approach (Liu et al., 2015).

Head Model Creation
For each participant, a 12-layer realistic head volume conduction
model was created for the neural activity reconstruction
step. Specifically, three steps were followed: electrodes position
detection and coregistration; head tissue segmentation; and lead-
field matrix calculation (Taberna et al., 2021). (1) Electrodes
position detection and coregistration. We detected the precise
locations of the EEG electrodes using the SPOT3D toolbox,
and coregistered them to the scalp of the individual MR image
(Taberna et al., 2019a,b). (2) Head tissue segmentation. Using
the MR-TIM software (Taberna et al., 2021), we segmented
the individual MR image to 12 tissue layers: skin, eyes,
muscle, fat, spongy bone, compact bone, cortical/subcortical gray
matter, cerebellar gray matter, cortical/subcortical white matter,
cerebellar white matter, cerebrospinal fluid, and brain stem. The
conductivity value of each tissue layer was defined according to
relevant studies (Haueisen et al., 1997; Holdefer et al., 2006).
(3) Lead-field matrix calculation. The individual lead-field matrix
projects the neural activity from the source space to scalp electric
potentials. The matrix was calculated using the Simbio finite
element method (Vorwerk et al., 2018), by meshing the tissue
layers to 6-mm hexahedrons and placing source dipoles in the
hexahedrons located inside the gray matter.

Neural Activity Reconstruction
We reconstructed the neural activity in the source space for each
participant using the exact low-resolution brain electromagnetic
tomography (eLORETA) algorithm (Pascual-Marqui et al., 2011),
as in our previous hdEEG studies (Liu et al., 2017; Samogin et al.,
2019; Zhao et al., 2019, 2021). This choice is corroborated by a
comparative analysis performed on different source localization
methods, which showed eLORETA to be particularly suitable
for neural source signal reconstruction from hdEEG data (Liu
et al., 2018). The preprocessed hdEEG data and the individual
head model were fed to the eLORETA algorithm, resulting in
an estimation of the oscillation strength and orientation of
the dipole in each voxel of the gray matter, at each temporal
moment. The estimated three-dimensional current density signal
of each voxel was projected to a representative signal by
taking the first principal components obtained from a principal
component analysis (PCA).

Brain-Body Connectivity Analyses
The reconstructed neural signals were analyzed in combination
with kinematic and EMG data to assess frequency-dependent
NKC and NMC, respectively. We initially assessed the NKC
and NMC in a region of interest (ROI) located in the right
primary motor cortex (M1) (Supplementary Table 1). For each
participant, we first transformed the MNI coordinates into
individual coordinates, and extracted the signals from the voxels
within a 6-mm sphere centered on the coordinates in individual
space. Then, a representative ROI signal was calculated as the
first principal component of the signals in the different ROI

FIGURE 6 | Gait-related time-frequency analysis for a representative region of interest. The plot shows the average frequency-dependent modulations of neural
signals in the gait cycle across participants, calculated from the neural signal of the right primary motor cortex (M1). The timing of gait events is indicated using
dashed vertical lines. LHS, left heel strike; RHS, right heel strike; LTO, left toe off; RTO, right toe off.
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voxels. We calculated a spectrogram in the frequency range [1–
50 Hz] by using a continuous wavelet transformation (number of
octaves = 6, voices per octave = 8). The frequency-specific power
modulations of the spectrogram were epoched, standardized
and averaged according to the same procedure used for the
velocity/EMG envelopes. This approach permitted the estimate
of frequency-dependent neural power dynamics during gait.
After, the correlation between neural power dynamics at each
frequency and velocity/EMG envelopes in the gait cycle was
calculated to quantify frequency-dependent NKC/NMC. Such
analysis was conducted for the M1 region in both hemispheres.
Specifically, brain-body connectivity was assessed for ROIs that
were either ipsilateral or contralateral to the body sensor, in
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz)
bands, respectively. The connectivity values were also analyzed
statistically. Specifically, we tested for differences across body
sensors, ROIs, frequency bands and body signal types, using a

four-way analysis of variance (ANOVA). To test whether gait-
related brain-body connectivity was not only present in brain
regions associated in motor execution, but also motor planning
and coordination, we extended the ROI analysis to bilateral
regions in thalamus (THAL), premotor cortex (PMC), posterior
parietal cortex (PPC), and cerebellum (CER) (Supplementary
Table 1). For each ROI, we used a two-way ANOVA on the
connectivity values, with body sensor and frequency band as
factors; we also conducted additional statistical analyses using
one-sample t-tests. Probabilities were corrected for multiple
comparisons using the false discovery rate (FDR) method.

We finally conducted a brain-body connectivity analysis
across brain voxels, by creating volumetric images for each
participant. The individual connectivity images were warped to
MNI space by applying a non-rigid deformation calculated from
the head MR image of each participant (Zhao et al., 2019). The
group-level connectivity patterns were obtained by averaging

FIGURE 7 | Frequency-dependent brain-body connectivity for a representative region of interest. The plots show the brain-body connectivity calculated from the
neural signal of the right primary motor cortex (M1), using (A) velocity envelopes and (B) EMG envelopes, respectively. Colored lines denote the mean across
participants, and colored areas denote the standard error of the mean.
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the images across participants for each frequency band, body
sensor and signal type. To further examine the main effects and
interaction of frequency band and body sensor, we applied a
voxel-wise two-way ANOVA on the same connectivity images.
The resulting statistical parametric images were thresholded at
p < 0.001 with multiple comparison correction using FDR.

RESULTS

Gait-Related Kinematic and
Electromyographic Profiles
Our analysis started from the detection of the gait events
and gait cycles (Figure 2). Clear gait-related modulations of

left and right ankle acceleration signals were observed, with
a consistent pattern across participants (Figure 2A). Based
on the LHS events of the continuous steps, we detected
about 200 to more than 400 gait cycles for each participant,
with average cycle duration ranging from 1000 to 2000 ms
(Figure 2B). With these gait events, we examined myogenic
and kinematic signals of the body sensors across the gait cycle.
Clear and consistent modulations both in velocity envelopes
(Figure 3A) and EMG envelopes (Figure 3B) were observed
across participants. The analysis of EMG envelopes evidenced
contractions of ipsilateral leg muscles in different phases of
the gait cycle. The vastus medialis contracted during a short
period before and after the heel strike event. The biceps
femoris and tibialis anterior activated mainly during the swing

FIGURE 8 | Analysis of brain-body connectivity for ipsilateral and contralateral primary motor cortex (M1), in alpha, beta, and gamma frequency bands. (A)
Brain-body connectivity assessed using envelopes of reconstructed neural signals and velocity envelopes. (B) Brain-body connectivity assessed using envelopes of
reconstructed neural signals and EMG envelopes. *pFDR < 0.05; **pFDR < 0.01; ***pFDR < 0.001.
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phase and around the heel strike event. The gastrocnemius
contracted mainly in the stance phase. On the contrary, the
velocity envelopes did not show substantial differences across
ipsilateral sensors: the velocity fluctuated during swinging and
kept flat during stance.

To examine the cross-sensor inter-dependence of the
velocity and the EMG envelopes, we calculated correlations
across sensors, separately for the two signal types (Figure 4)
and between them (Supplementary Figure 4). The velocity
envelopes showed significant positive correlations in all the
ipsilateral sensors, and a significant negative correlation between
contralateral sensors for the thigh (i.e., vastus medialis and
biceps femoris) (Figure 4A). The EMG envelopes of vastus
medialis, biceps femoris, and tibialis anterior had significant
positive correlation for the ipsilateral lower limb, and significant
negative correlation for the contralateral lower limb (Figure 4B).
Conversely, a reversed correlation pattern was found in the
EMG envelopes of gastrocnemius (Figure 4B). We further
analyzed the average level of inter-dependence of each of the
two signal types (Figure 5A). This analysis revealed a higher
inter-dependence between velocity envelopes (r̄abs_mean = 0.35)
than EMG envelopes (r̄abs_mean = 0.31). The difference between
signal types was more prominent when the maximum level

of inter-dependence was considered (r̄abs_max = 0.89 and 0.68,
respectively) (Figure 5B).

Brain-Body Connectivity in Regions
Related to Motor Planning, Execution,
and Coordination
In order to examine NKC and NMC, we reconstructed band-
limited power envelopes of the neural signal for the right M1
region (Figure 6). The power in alpha and beta bands decreased
during leg swings and rebounded after the swings, whereas a
reverse modulation emerged for the gamma band. By calculating
the correlation of the power signals in each frequency with each
type of body signals, we generally revealed visible and stable
NKC and NMC in the alpha and beta bands for the right M1
(Figure 7). The NKC were negative for all the left limb sensors
(Figure 7A, left panel), and were positive for all the right limb
sensors (Figure 7A, right panel). The NMC was negative for the
vastus medialis, biceps femoris, and tibialis anterior located in
the left lower limb, whereas it was positive for the gastrocnemius
on the same limb (Figure 7B, left panel). A completely reversed
connectivity pattern was observed for the sensors of the right leg
(Figure 7B, right panel).

FIGURE 9 | Analysis of brain-body connectivity for ipsilateral and contralateral thalamus (THAL), premotor cortex (PMC), posterior parietal cortex (PPC), and
cerebellum (CER), in alpha, beta, and gamma frequency bands. The brain-body connectivity is assessed using envelopes of reconstructed neural signals and EMG
envelopes. *pFDR < 0.05; **pFDR < 0.01; ***pFDR < 0.001.
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FIGURE 10 | Brain-body connectivity maps for (A) alpha and (B) beta frequency bands, obtained using EMG envelopes. We considered the EMG envelopes for
each of the eight body sensors: left/right vastus medialis, biceps femoris, tibialis anterior, gastrocnemius. We used the threshold r > 0.2 for visualization purposes.

We then extended the NKC and NMC analysis also to
the left M1 ROIs, and examined the connectivity matrices in
alpha, beta, and gamma band for bilateral M1 ROIs (Figure 8).
In general, strong and significant brain-body connectivity was
present in the alpha and beta bands, whereas less reliable
connectivity was found in the gamma band. The NKC of all
the sensors was positive in the ipsilateral M1 and was negative
in the contralateral M1, with relatively fewer sensors showing
significant values as compared to the NMC (Figure 8A). For
the vastus medialis, biceps femoris, and tibialis anterior, the
NMC was positive in the ipsilateral M1 and was negative
in the contralateral M1 (Figure 8B). Conversely for the
gastrocnemius, the ipsilateral M1 showed negative connectivity
and the contralateral M1 showed positive connectivity. To test
the relative contribution of body sensor, ROI, frequency band,
and body signal type on the connectivity values, we run a four-
way ANOVA (Supplementary Table 2). The results revealed
significant differences in connectivity across body sensors, ROIs
and frequency bands (p < 0.001 for each of the three factors).
Conversely, we found no significant differences between body
signal types (p= 0.806).

Considering that the two NKC and NMC metrics were
dependent to each other, and the muscular signals showed
relatively lower inter-dependence, we focused on NMC only from

this point on. By extending the ROI analysis to THAL, PMC,
PPC, and CER, we specifically investigated whether brain-body
connectivity involves not only M1, a brain region supporting
motor execution, but also other regions typically associated with
motor planning and coordination (Figure 9). Overall, we found
robust NMC in M1, PMC, PPC, and CER regions, whereas much
weaker effects were observed in THAL. The ANOVA results
showed the NMC values were strongly modulated (pFDR < 0.001)
on the body sensor in bilateral M1, bilateral PMC, ipsilateral PPC,
and ipsilateral CER, and by the frequency band in the ipsilateral
M1 only (Supplementary Table 3).

Whole-Brain Analysis of Brain-Body
Connectivity
A whole-brain analysis was conducted to assess the spatial
specificity of the NMC patterns. In general, we observed
lateralized NMC patterns for each sensor both in the alpha and
beta bands over or close to the primary sensorimotor cortex
(Figure 10). For the vastus medialis, the biceps femoris and the
tibialis anterior, alpha-band and beta-band NMC had positive
values over the ipsilateral hemisphere, and peaked at different
locations of the primary sensorimotor cortex; furthermore, the
positive alpha-band NMC was more widespread, and therefore
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FIGURE 11 | Results of the ANOVA conducted on the source images of
brain-body connectivity. We specifically performed a two-way ANOVA, using
the frequency band and the body sensors as factors, respectively. The
resulting maps for the main effects of frequency band, body sensor, and their
interaction are thresholded at pFDR < 0.001.

less spatially specific, than the beta-band NMC, whereas beta-
band NMC was more focal over the ipsilateral sensorimotor
cortex. Negative alpha- and beta-band NMC values were
primarily found in the contralateral hemisphere, and had
less consistent spatial distribution across body sensors than
positive NMC values. The alpha- and beta-band NMC for the
gastrocnemius appeared to have reversed polarity with respect to
that of the other sensors. The NMC maps for the gamma band
had lower intensity than for the alpha and beta bands, and were
less reliable across body sensors (Supplementary Figure 5).

To further test the effect of frequency band, body sensor and
their interaction, we applied a voxel-wise full factorial ANOVA
on the connectivity images (Figure 11). The analysis revealed
significant differences (pFDR < 0.001) in NMC across the body
sensors mainly over the bilateral primary sensorimotor cortex,
but did not result in any regions with either significant differences
across frequency bands (pFDR > 0.99) or significant interaction
between body sensor and frequency band (pFDR > 0.98). Overall,

the ANOVA map obtained for the body sensor as factor spanned
not only M1 regions, but included also other regions in the
premotor and posterior parietal cortex. These results were largely
consistent with what already observed thorough the ROI analyses
(Figures 8B, 9 and Supplementary Table 3).

DISCUSSION

In this study, we investigated brain-body connectivity during
gait using a hdEEG-based mobile brain-body imaging platform.
Considering that brain-body connectivity can be quantified either
using muscular (NMC) or kinematic (NKC) signals, we also
evaluated which of the two measures may yield the largest
discriminative power. Next, we tested whether gait-related brain-
body connectivity is characterized by specific spatial patterns
depending on the specific body sensor and the neural oscillations
of interest, and we evaluated if the brain regions showing robust
gait-related brain-body connectivity are those typically related to
motor execution, or also to motor planning and coordination. To
the best of our knowledge, this was the first study that addressed
these specific questions by examining source-reconstructed
EEG signals, rather than EEG recordings. Our results showed
that myogenic body signals have more discriminative power
than kinematic signals in evaluating gait-related brain-body
connectivity, and that brain-body connectivity measures map
on brain regions related to motor execution, but also motor
planning and coordination. In addition, the gait-related brain-
body connectivity showed to be dependent on the body sensor
used to extract kinematic/EMG dynamics, and only to a much
lesser extent to the frequency of the neural oscillations measured
using EEG. We will more extensively discuss these findings in the
following sections.

Kinematic and Myogenic Signals for
Brain-Body Connectivity Analysis
We started our investigations by analyzing the kinematic and
myogenic signals, respectively. We generally observed significant
correlations across body sensors, not only within but also between
signal types. This was expected, as the contractions of skeletal
muscles are the main drivers of the lower limb velocities and
accelerations (van Leeuwen et al., 2003). Several EMG studies
provided a detailed characterization of lower-limb muscular
activity profiles during normal gait (Winter and Yack, 1987; Liu
et al., 2008; Allen et al., 2013; Bonnefoy-Mazure and Armand,
2015). Specifically, it was observed that the leg muscles are
activated in a coordinated sequential pattern across the gait cycle,
supporting balance and movement control (Bonnefoy-Mazure
and Armand, 2015). The EMG envelopes in our study were
largely in line with previous findings. For example, the vastus
medialis of a heel-striking lower limb was activated from the
initial double support phase to the beginning of the stance. The
biceps femoris activated from the terminal part of the swing phase
until the double support phase, which occurs just after the heel
strike. The activity of the tibialis anterior spanned the swing and
the subsequent double support phases. The gastrocnemius mainly
activated during stance, in opposition to the above-mentioned
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muscles. Overall, the leg movements can be modeled as two
double-pendulums, and accelerations/velocities of the same bone
should share a similar pattern (Kubo et al., 2004; Sartori et al.,
2014). It is therefore not surprising that we found relatively
higher inter-dependence in kinematic signals than in myogenic
signals. We therefore concluded that the myogenic signals had
more discriminative power, and were more suited to assess brain-
body connectivity.

Characterization of Brain-Body
Connectivity Images
We characterized gait-related brain-body connectivity in the
whole brain by generating source images of NMC for each
frequency band across body sensors. Reliable connectivity images
were generally obtained with neural oscillations in the alpha and
beta bands. This is consistent with several studies that reported
modulations of alpha and beta oscillations during movement
performance, both in seated conditions (Pfurtscheller et al.,
1996; Tan et al., 2016; Porcaro et al., 2018, 2021; Zhao et al.,
2019) and walking conditions (Wagner et al., 2016; Zhao et al.,
2022). Strongest brain-body connectivity values were located
over or close to the bilateral M1, the portion of cortex that is
primarily associated with movement execution (Todorov, 2000;
Lemon, 2008). Brain regions that are typically associated with
motor planning and coordination, as for instance PMC, PPC,
and CER (Battaglia-Mayer and Caminiti, 2019; Zhao et al.,
2022), showed less strong but still significant NMC values.
Furthermore, the voxel-wise ANOVA that we conducted in our
study revealed significant differences in brain-body connectivity
across body sensors over the bilateral primary sensorimotor
cortex. This indicates that the leg muscles connect with the
brain in a somatotopic manner (Artoni et al., 2017), and that
the activity of the brain regions involved may be temporally
modulated to support sophisticated muscular actions of gait
performance (Neptune et al., 2004; Liu et al., 2008; Bonnefoy-
Mazure and Armand, 2015). The ANOVA on NMC maps
revealed no significant difference across frequency bands, and no
interaction between frequency bands and sensors. Accordingly,
alpha and beta neural oscillations, and to some extent also gamma
neuronal oscillations, support the coordinated muscular actions
of gait performance (Zhao et al., 2022), but no clear functional
dissociation between them could be detected in terms of brain-
body connectivity at the whole-brain level.

Gait-Related Brain-Body Connectivity in
Motor-Related Regions
In this study, we also conducted analyses on frequency-
dependent brain-body connectivity for several motor-related
ROIs, among which M1, THAL, PMC, PPC, and CER. These
analyses provided largely coherent results as compared to the
whole-bran analyses, showing that myogenic activity is not only
related to neural activity in M1, but also PMC, PPC, and CER.
The results that we obtained for THAL were much less clear
than the other regions. For the bilateral M1, NMC, and NKC
values were rather weak for the gamma band, probably because
that gamma oscillations are more associated with motor planning

(Brovelli et al., 2005; Thürer et al., 2016) and coordination
(Santarnecchi et al., 2017; Li et al., 2020) than motor execution.
The vastus medialis, biceps femoris, and tibialis anterior showed
negative alpha- and beta-band NMC for the contralateral M1.
Notably, this finding is in line with one of our previous hdEEG
studies, in which the contraction of tibialis anterior yielded a
power decrease of alpha- and beta-band neural oscillations in
the contralateral hemisphere of the primary sensorimotor cortex
(Zhao et al., 2019), which is indicative of an increased excitability
of local neurons supporting motor performance (Pfurtscheller
and Lopes da Silva, 1999; Neuper et al., 2006). It should be
noted that, unlike the other muscles, the gastrocnemius activation
during gait correlated with alpha- and beta-band neural power
increases in the contralateral M1. Furthermore, leg velocity
correlated with decreases in alpha- and beta-band neural power
for the contralateral M1. Taking these observations together, we
can further infer that the gait-related desynchronization of alpha
and beta oscillations may primarily relate to the leg movements,
rather than the leg muscle contractions. This may be the case
that the fluctuations in the level of recruitment of local neurons
in contralateral M1 during walking mainly reflect the changes in
uncertainty estimations between sensory predictions and actual
sensory inputs of the lower limb movements, rather than being
exclusively related to muscle control (Tan et al., 2016).

Limitations
We should acknowledge that our study has a number of
limitations. First, we only included a treadmill walking task.
Future investigation of brain-body connectivity in overground
free walking conditions are warranted, as they may reveal further
information regarding the neural processes of gait control.
Second, our analysis of NKC only included velocity signals
acquired from the lower limbs. The use a three-dimensional
infrared camera system (Pfister et al., 2014) and force measuring
treadmill (De Witt and Ploutz-Snyder, 2014) may provide
additional data, for instance joint angles and ground reaction
forces, that would enable more extensive investigations on NKC;
likewise, collecting EMG signals from additional lower limb
muscles, as compared to those we included in this study, may be
beneficial for future investigations on NMC (Bonnefoy-Mazure
and Armand, 2015). Third, the synchronization between EMG
and EEG in the MoBI platform was performed offline. It should
be considered, however, that real-time synchronization may be
desirable for applications out of the research field (King and
Parada, 2021). Lastly, we evaluated the NMC and NKC using a
trial-averaged approach to increase the signal to noise ratio. The
use of trial-level modeling methods (Kamiński et al., 2001; Chen
et al., 2021) is warranted in future studies to examine temporal
delays between brain and body signals (Artoni et al., 2017; Xu
et al., 2017).

CONCLUSION

Overall, our study contributed to a finer characterization of brain-
body connectivity during gait in healthy individuals, revealing
robust relationships between muscular, kinematic, and neural
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signals. Notably, we performed a characterization of muscular
signals considering one EMG sensor at the time. An interesting
avenue for future research is extraction of gait-related muscle
synergies from multi-channel EMG data (Chia Bejarano et al.,
2017), and the analysis of their relationship with neural signals.
Future studies may also be directed toward the investigation
of different walking conditions, such as passive walking with
exoskeleton support (Alqahtani et al., 2021) or gravity-reduced
walking (Richter et al., 2021). Furthermore, we believe it would
be interesting to use the MoBI approach to simultaneously
collect kinematic, EMG and EEG data in individuals with
neuromotor disorders such as Parkinson’s disease, to identify
neural correlates of abnormal gait (Cao et al., 2021; Tosserams
et al., 2022).
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