1,870 research outputs found

    Binary Linear Tree Commitment-based Ownership Protection for Distributed Machine Learning

    Full text link
    Distributed machine learning enables parallel training of extensive datasets by delegating computing tasks across multiple workers. Despite the cost reduction benefits of distributed machine learning, the dissemination of final model weights often leads to potential conflicts over model ownership as workers struggle to substantiate their involvement in the training computation. To address the above ownership issues and prevent accidental failures and malicious attacks, verifying the computational integrity and effectiveness of workers becomes particularly crucial in distributed machine learning. In this paper, we proposed a novel binary linear tree commitment-based ownership protection model to ensure computational integrity with limited overhead and concise proof. Due to the frequent updates of parameters during training, our commitment scheme introduces a maintainable tree structure to reduce the costs of updating proofs. Distinguished from SNARK-based verifiable computation, our model achieves efficient proof aggregation by leveraging inner product arguments. Furthermore, proofs of model weights are watermarked by worker identity keys to prevent commitments from being forged or duplicated. The performance analysis and comparison with SNARK-based hash commitments validate the efficacy of our model in preserving computational integrity within distributed machine learning

    A comparative study of ATPase subunit 9 (Atp9) gene between cytoplasmic male sterile line and its maintainer line in soybeans

    Get PDF
    ATPase subunit 9 gene (Atp9) is an important functional gene in mitochondria, and is closely related with energy supply. RNA editing of atp9 gene was associated with male sterility in plants. In this study, the atp9 gene in soybeans was cloned from a soybean cytoplasmic male sterile line NJCMS2A and its maintainer line NJCMS2B. Sequence alignment was performed, and protein structures were analyzed and compared between the soybean cytoplasmic male sterile line NJCMS2A and its maintainer line NJCMS2B. The results show that the fragments with identical sequences of atp9 gene were amplified from the genomic DNA of NJCMS2A and NJCMS2B, while the sequences of atp9 were different when they were amplified from cDNAs of NJCMS2A and NJCMS2B. RNA editing of atp9 gene in the maintainer line NJCMS2B was detected with two nucleotide sites (C to U) in the conserved region, leading to conversion of hydrophilic amino acid serine into hydrophobic leucine. No RNA editing was detected in atp9 gene in the male sterile line NJCMS2A. The putative trans-membrane structures of the atp9 proteins were different, and their trans-membrane directions were opposite.Key words: Soybean, cytoplasmic male sterility, atp9 gene, RNA editing

    Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

    Full text link
    User response prediction, which models the user preference w.r.t. the presented items, plays a key role in online services. With two-decade rapid development, nowadays the cumulated user behavior sequences on mature Internet service platforms have become extremely long since the user's first registration. Each user not only has intrinsic tastes, but also keeps changing her personal interests during lifetime. Hence, it is challenging to handle such lifelong sequential modeling for each individual user. Existing methodologies for sequential modeling are only capable of dealing with relatively recent user behaviors, which leaves huge space for modeling long-term especially lifelong sequential patterns to facilitate user modeling. Moreover, one user's behavior may be accounted for various previous behaviors within her whole online activity history, i.e., long-term dependency with multi-scale sequential patterns. In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user. The model also adopts a hierarchical and periodical updating mechanism to capture multi-scale sequential patterns of user interests while supporting the evolving user behavior logs. The experimental results over three large-scale real-world datasets have demonstrated the advantages of our proposed model with significant improvement in user response prediction performance against the state-of-the-arts.Comment: SIGIR 2019. Reproducible codes and datasets: https://github.com/alimamarankgroup/HPM

    Align before Search: Aligning Ads Image to Text for Accurate Cross-Modal Sponsored Search

    Full text link
    Cross-Modal sponsored search displays multi-modal advertisements (ads) when consumers look for desired products by natural language queries in search engines. Since multi-modal ads bring complementary details for query-ads matching, the ability to align ads-specific information in both images and texts is crucial for accurate and flexible sponsored search. Conventional research mainly studies from the view of modeling the implicit correlations between images and texts for query-ads matching, ignoring the alignment of detailed product information and resulting in suboptimal search performance.In this work, we propose a simple alignment network for explicitly mapping fine-grained visual parts in ads images to the corresponding text, which leverages the co-occurrence structure consistency between vision and language spaces without requiring expensive labeled training data. Moreover, we propose a novel model for cross-modal sponsored search that effectively conducts the cross-modal alignment and query-ads matching in two separate processes. In this way, the model matches the multi-modal input in the same language space, resulting in a superior performance with merely half of the training data. Our model outperforms the state-of-the-art models by 2.57% on a large commercial dataset. Besides sponsored search, our alignment method is applicable for general cross-modal search. We study a typical cross-modal retrieval task on the MSCOCO dataset, which achieves consistent performance improvement and proves the generalization ability of our method. Our code is available at https://github.com/Pter61/AlignCMSS

    Context-I2W: Mapping Images to Context-dependent Words for Accurate Zero-Shot Composed Image Retrieval

    Full text link
    Different from Composed Image Retrieval task that requires expensive labels for training task-specific models, Zero-Shot Composed Image Retrieval (ZS-CIR) involves diverse tasks with a broad range of visual content manipulation intent that could be related to domain, scene, object, and attribute. The key challenge for ZS-CIR tasks is to learn a more accurate image representation that has adaptive attention to the reference image for various manipulation descriptions. In this paper, we propose a novel context-dependent mapping network, named Context-I2W, for adaptively converting description-relevant Image information into a pseudo-word token composed of the description for accurate ZS-CIR. Specifically, an Intent View Selector first dynamically learns a rotation rule to map the identical image to a task-specific manipulation view. Then a Visual Target Extractor further captures local information covering the main targets in ZS-CIR tasks under the guidance of multiple learnable queries. The two complementary modules work together to map an image to a context-dependent pseudo-word token without extra supervision. Our model shows strong generalization ability on four ZS-CIR tasks, including domain conversion, object composition, object manipulation, and attribute manipulation. It obtains consistent and significant performance boosts ranging from 1.88% to 3.60% over the best methods and achieves new state-of-the-art results on ZS-CIR. Our code is available at https://github.com/Pter61/context_i2w

    Watermarking Vision-Language Pre-trained Models for Multi-modal Embedding as a Service

    Full text link
    Recent advances in vision-language pre-trained models (VLPs) have significantly increased visual understanding and cross-modal analysis capabilities. Companies have emerged to provide multi-modal Embedding as a Service (EaaS) based on VLPs (e.g., CLIP-based VLPs), which cost a large amount of training data and resources for high-performance service. However, existing studies indicate that EaaS is vulnerable to model extraction attacks that induce great loss for the owners of VLPs. Protecting the intellectual property and commercial ownership of VLPs is increasingly crucial yet challenging. A major solution of watermarking model for EaaS implants a backdoor in the model by inserting verifiable trigger embeddings into texts, but it is only applicable for large language models and is unrealistic due to data and model privacy. In this paper, we propose a safe and robust backdoor-based embedding watermarking method for VLPs called VLPMarker. VLPMarker utilizes embedding orthogonal transformation to effectively inject triggers into the VLPs without interfering with the model parameters, which achieves high-quality copyright verification and minimal impact on model performance. To enhance the watermark robustness, we further propose a collaborative copyright verification strategy based on both backdoor trigger and embedding distribution, enhancing resilience against various attacks. We increase the watermark practicality via an out-of-distribution trigger selection approach, removing access to the model training data and thus making it possible for many real-world scenarios. Our extensive experiments on various datasets indicate that the proposed watermarking approach is effective and safe for verifying the copyright of VLPs for multi-modal EaaS and robust against model extraction attacks. Our code is available at https://github.com/Pter61/vlpmarker
    corecore