130 research outputs found

    Dimensions of the Community College Faculty Labor Market

    Get PDF
    This is the publisher's version, also available electronically from http://muse.jhu.edu/journals/review_of_higher_education/v024/24.3gahn.html.No abstract is available for this item

    Analytical and experimental studies of acoustic performance of segmented liners in a compressor inlet

    Get PDF
    The performance of axially segmented (phased) acoustic treatment liners in the inlet of a compressor was investigated. Topics discussed include: (1) the validation of a theoretical procedure to predict propagation and suppression characteristics of duct liners; (2) the in-duct measurement of spinning modes; (3) investigation of phased treatment designs; (4) high Mach inlet acoustic tests; and (5) an experimental investigation of inlet turbulence. The analytical prediction for the multi-segmented treatment was found to provide the correct order of magnitude of suppression and was generally within 50% of that determined experimentally. Refinements required to improve the correlation are identified. Suppression due to high subsonic Mach number flow effects was found to become significant above an average throat Mach number of 0.65 to 0.7 and 20 PNdB was achieved with an average throat Mach number in the range of 0.80 to 0.85. For the measured turbulence in the inlet, including the axial and circumferential turbulence intensities and the axial integral length scale, data are presented with and without an inlet screen showing that the screen reduced the turbulence intensities and that the BPF noise was reduced as a consequence

    Bright betatron x-ray radiation from a laser-driven-clustering gas target

    Get PDF
    Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications

    Novel strategies to fight Candida species infection

    Get PDF
    In recent years, there has been a significant increase in the incidence of human fungal infections. The increase in cases of infection caused by Candida species, and the consequent excessive use of antimicrobials, has favored the emergence of resistance to conventional antifungal agents over the past decades. Consequently, Candida infections morbidity and mortality are also increasing. Therefore, new approaches are needed to improve the outcome of patients suffering from Candida infections, because it seems unlikely that the established standard treatments will drastically lower the morbidity of mucocutaneous Candida infections and the high mortality associated with invasive candidiasis. This review aims to present the last advances in the traditional antifungal therapy, and present an overview of novel strategies that are being explored for the treatment of Candida infections, with a special focus on combined antifungal agents, antifungal therapies with alternative compounds (plant extracts and essential oils), adjuvant immunotherapy, photodynamic therapy and laser therapy.Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB’’, Ref. FCOMP-01-0124-FEDER-027462BioHealth – Biotechnology and Bioengineering approaches to improve health quality’’, Ref. NORTE-07-0124-FEDER-000027 co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER

    Simulating Poynting Flux Acceleration in the Laboratory with Colliding Laser Pulses

    Get PDF
    We review recent PIC simulation results which show that double-sided irradiation of a thin over-dense plasma slab with ultra-intense laser pulses from both sides can lead to sustained comoving Poynting flux acceleration of electrons to energies much higher than the conventional ponderomotive limit. The result is a robust power-law electron momentum spectrum similar to astrophysical sources. We discuss future ultra-intense laser experiments that may be used to simulate astrophysical particle acceleration.Comment: Paper accepted for publication in the Astrophysics and Space Science, Volume for HEDLA06 conference proceedings, edited by G. Kyrala, in pres

    Transcription Profiling of Epstein-Barr Virus Nuclear Antigen (EBNA)-1 Expressing Cells Suggests Targeting of Chromatin Remodeling Complexes

    Get PDF
    The Epstein-Barr virus (EBV) encoded nuclear antigen (EBNA)-1 regulates virus replication and transcription, and participates in the remodeling of the cellular environment that accompanies EBV induced B-cell immortalization and malignant transformation. The putative cellular targets of these effects of EBNA-1 are largely unknown. To address this issue we have profiled the transcriptional changes induced by short- and long-term expression of EBNA-1 in the EBV negative B-cell lymphoma BJAB. Three hundred and nineteen cellular genes were regulated in a conditional transfectant shortly after EBNA-1 induction while a ten fold higher number of genes was regulated upon continuous EBNA-1 expression. Promoter analysis of the differentially regulated genes demonstrated a significant enrichment of putative EBNA-1 binding sites suggesting that EBNA-1 may directly influence the transcription of a subset of genes. Gene ontology analysis of forty seven genes that were consistently regulated independently on the time of EBNA-1 expression revealed an unexpected enrichment of genes involved in the maintenance of chromatin architecture. The interaction network of the affected gene products suggests that EBNA-1 may promote a broad rearrangement of the cellular transcription landscape by altering the expression of key components of chromatin remodeling complexes

    The Dyad Symmetry Element of Epstein-Barr Virus Is a Dominant but Dispensable Replication Origin

    Get PDF
    OriP, the latent origin of Epstein-Barr virus (EBV), consists of two essential elements: the dyad symmetry (DS) and the family of repeats (FR). The function of these elements has been predominantly analyzed in plasmids transfected into transformed cells. Here, we examined the molecular functions of DS in its native genomic context and at an ectopic position in the mini-EBV episome. Mini-EBV plasmids contain 41% of the EBV genome including all information required for the proliferation of human B cells. Both FR and DS function independently of their genomic context. We show that DS is the most active origin of replication present in the mini-EBV genome regardless of its location, and it is characterized by the binding of the origin recognition complex (ORC) allowing subsequent replication initiation. Surprisingly, the integrity of oriP is not required for the formation of the pre-replicative complex (pre-RC) at or near DS. In addition we show that initiation events occurring at sites other than the DS are also limited to once per cell cycle and that they are ORC-dependent. The deletion of DS increases initiation from alternative origins, which are normally used very infrequently in the mini-EBV genome. The sequence-independent distribution of ORC-binding, pre-RC-assembly, and initiation patterns indicates that a large number of silent origins are present in the mini-EBV genome. We conclude that, in mini-EBV genomes lacking the DS element, the absence of a strong ORC binding site results in an increase of ORC binding at dispersed sites

    Zinc Coordination Is Required for and Regulates Transcription Activation by Epstein-Barr Nuclear Antigen 1

    Get PDF
    Epstein-Barr Nuclear Antigen 1 (EBNA1) is essential for Epstein-Barr virus to immortalize naΓ―ve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO2). Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO2 and redox potential
    • …
    corecore