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Abstract

In recent years, there has been a significant increase in the incidence of human fungal
infections. The increase in cases of infection caused by Candida species, and the consequent
excessive use of antimicrobials, has favored the emergence of resistance to conventional
antifungal agents over the past decades. Consequently, Candida infections morbidity and
mortality are also increasing. Therefore, new approaches are needed to improve the outcome
of patients suffering from Candida infections, because it seems unlikely that the established
standard treatments will drastically lower the morbidity of mucocutaneous Candida infections
and the high mortality associated with invasive candidiasis. This review aims to present the last
advances in the traditional antifungal therapy, and present an overview of novel strategies
that are being explored for the treatment of Candida infections, with a special focus on
combined antifungal agents, antifungal therapies with alternative compounds (plant extracts
and essential oils), adjuvant immunotherapy, photodynamic therapy and laser therapy.
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Introduction

The incidence and prevalence of invasive fungal infections

caused by yeasts of the Candida genus is a major problem,

especially in immunocompromised patients or those hospita-

lized with serious underlying diseases (Arendrup et al., 2005;

Enoch et al., 2006; Espinel-Ingroff et al., 2009; Gahn et al.,

2007; Ruhnke et al., 2011; Sims et al., 2005; Van de

Veerdonk et al., 2010).

Candida species are frequent colonizers of the skin and

mucous membranes of animals and their dissemination in

nature is widespread (Ruhnke, 2006; Ruhnke et al., 2011).

There are over 350 heterogeneous Candida species, but only

a few have been implicated in human disease: Candida

albicans, Candida dubliniensis, Candida parapsilosis,

Candida tropicalis, Candida glabrata, Candida kefyr

(pseudotropicalis), Candida lusitaniae, Candida krusei,

Candida guilliermondii, Candida utilis, Candida lipolytica,

Candida famata, Candida haemulonii and Candida rugosa

(Ruhnke, 2006; Ruhnke et al., 2011; Williams et al., 2011).

Although C. albicans remains as the most common pathogen,

non-Candida albicans Candida (NCAC) species are now

increasingly associated with invasive candidiasis (Baran

et al., 2001; Diekema et al., 2002; Macphall et al., 2002;

Pappas et al., 2004; Pfaller et al., 1998; , Trick et al., 2002).

The spectrum of diseases caused by Candida consists of

superficial and invasive Candida infections. These infections

range from non-life-threatening mucocutaneous illnesses to

invasive processes that may involve virtually any organ

(Blumber et al., 2001; Kojic & Darqouiche, 2004;

Kuhn et al., 2002a; Michalopoulos et al., 2003; Munoz

et al., 2000; Pappas et al., 2004; Ruhnke et al., 2011;

Rüping et al., 2008; Tumvarello et al., 2007; Wey et al.,

1989; Wenzel, 1995; Williams et al., 2011). A number of

factors have been implicated in the significant increase of

incidence of human fungal infections, but it is generally

accepted that the main influences relate to the more

widespread provision of new medical practices, such as

immunosuppressive therapy and use of broad spectrum

antibiotics, central venous catheters, parenteral nutrition,

invasive surgical procedures and indwelling medical devices

(e.g. dental implants, catheters, heart valves, vascular bypass

grafts, ocular lenses, artificial joints and central nervous

system shunts) which can act as substrates for biofilm

formation (Blumber et al., 2001; Michalopoulos et al.,

2003; Muñoz et al., 2000; Ruhnke et al., 2011; Rüping

et al., 2008; Wenzel, 1995; Wey et al., 1989; Williams et al.,

2011). Indeed, most manifestations of candidiasis are in fact

associated with the formation of Candida biofilms on

surfaces, and this phenotype is implicated with infection at

both the mucosal and systemic sites (Jabra-Rizk et al., 2004).

Biofilms, represent the most prevalent type of microbial

growth in nature, and consist in a complex surface-associated

cell populations embedded in an extracellular matrix (ECM)

that posses distinct phenotypes compared to their planktonic

cell counterparts (Fanning & Mitchell, 2012). Biofilm cell

communities are more resistant to antifungal drugs than

planktonic cells and can create a source of persistent

infection (Chandra et al., 2001). Contributing factors include

biofilm structural complexity, presence of ECM, metabolic
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heterogeneity intrinsic to biofilms and biofilm-associated

up-regulation of efflux pump genes. The actual fold increase

in resistance varies with both the drug and species

(Chandra et al., 2001; Fanning & Mitchell, 2012).

Biofilm-associated Candida infections show uniform

resistance to a wide spectrum of the currently available

conventional antifungal agents, which implies that antimicro-

bial drugs that specifically target biofilm-associated infec-

tions are needed (Jabra-Rizk et al., 2004).

Epidemiology

Invasive candidiasis, mostly candidaemia, is a serious and

potentially lethal disease. It is associated with a high global

mortality rate, ranging from 36% to 63% in different patient

groups (Gudlaugsson et al., 2003; Guery et al., 2009;

Kullberg et al., 2011; Marchetti et al., 2004; Pappas et al.,

2003; Tortorano et al., 2004; Van de Veerdonk et al., 2010;

Wisplinghoff et al., 2004; Zaoutis et al., 2005), and repre-

sents a significant burden on the public health system in terms

of patient management and healthcare costs (Kullberg et al.,

2011; Tortorano et al., 2004). Of particular significance is

the fact that approximately half of all Candida infections now

occur in intensive-care units (ICUs; Kullberg et al., 2005,

2011; Vincent et al., 1998).

Of the Candida species isolated from humans, C. albicans

is the most prevalent in both health and disease. Mycological

studies have shown that candidaemia is most often caused

by C. albicans (45–65%), but there has been a significant

pathogen shift towards other Candida species over the past

few years in some patient groups (Arendrup et al., 2008;

Dupont et al., 2009; Kullberg et al., 2011; Tortorano et al.,

2004; Trick et al., 2002). In particular, C. glabrata (15–30%),

C. tropicalis (10–30%), C. parapsilosis, C. krusei,

C. lusitaniae and C. guilliermondii have been implicated

in invasive candidiasis (Ruhnke et al., 2011; Tortorano et al.,

2004; Viscoli et al., 1999).

A shift in the etiology of candidaemia has been documented

in Slovakia and France, where the rate of NCAC species,

especially C. glabrata, increased in 10 years from 0% to 46%

(Krcméry & Kovačičová, 2000; Ruhnke et al., 2011; Sendid

et al., 2006). In contrast, in Spain and Italy, C. parapsilosis is

the predominant agent of candidaemia after C. albicans

(Almirante et al., 2006; Bassetti et al., 2007; Ruhnke et al.,

2011). A study in Denmark documented an increase in the

incidence of candidaemia, from 2003 to 2004, with C. glabrata

being second after C. albicans (Almirante et al., 2006;

Bassetti et al., 2007; Ruhnke et al., 2011). These increased

prevalence of NCAC species in disease could also reflect

their inherently higher level of antifungal drug resistance

(González et al., 2010; Williams et al., 2011) compared with

C. albicans, as this would promote their persistence, possibly

to the detriment of C. albicans, in mixed-species infections

treated with traditional antifungal agents ( Colombo et al.,

1999; Kullberg et al., 2011; Rocco et al., 2000; Williams

et al., 2011). The changing epidemiology has been partly

attributed to selection of less sensitive Candida species, due to

the widespread use of fluconazole as a prophylactic and

therapeutic agent (Colombo et al., 1999; Kullberg et al.,

2011; Rocco et al., 2000).

The relatively high rate of infection by Candida species

in ICUs, the increasing prevalence of NCAC species, and the

associated mortality suggest that new treatment approaches

are required. Findings from numerous prospective and

retrospective studies indicate that optimizing and reducing

the delay of antifungal therapy reduces attributable mortality

in patients with candidemia whereas inappropriate antifungal

therapy is a significant predictor of mortality (Antoniadou

et al., 2003; Bassetti et al., 2007; Blot et al., 2002; Dupont

et al., 2009; Ibrahim et al., 2000; Morrell et al., 2005).

Standard treatment

The current standard treatment of Candida infections consists

of antifungal agents licensed from four different groups:

polyenes, azoles, echinocandins and nucleoside analogues

(Caillot et al., 1994; Ruhnke et al., 2011; Van de Veerdonk

et al., 2010).

Polyene antifungal agents (e.g. nystatin and amphotericin

B) exert their fungicidal activity by causing porosity on the

fungal cell membrane followed by interaction with the

membrane ergosterol and subsequent loss of cytoplasmic

content (Henry et al., 2000; Onyewu & Heitman, 2007;

Sanglard et al., 2003; Williams et al., 2011). A second

proposed mechanism of action involves a cascade of oxidation

reactions and interactions with lipoproteins that impair

membrane permeability through the release of free radicals

(Barwicz et al., 1998; Brajtburg et al., 1990; Onyewu &

Heitman, 2007).

Nystatin was the first antifungal agent reported and is

available in topical creams and oral washes for treatment

of cutaneous and mucocutaneous candidiasis. For its turn,

Amphotericin B exhibits broad spectrum antifungal activity

against a variety of pathogenic fungi (Andes, 2003; Onyewu

& Heitman, 2007), but its clinical utility is limited by a severe

nephrotoxicity (Luber et al., 1999; Onyewu & Heitman,

2007; Sawaya et al., 1995). Indeed, the affinity of

Amphotericin B for cholesterol, the main sterol of mamma-

lian cell membranes, is believed to cause alterations in the

membrane permeability of renal tubules and vasculature,

contributing to toxicity (Deray, 2002; Onyewu & Heitman,

2007). Furthermore, this antifungal has a poor oral and

intramuscular absorption, and is consequently formulated as a

micellar suspension solubilized in deocycholate (D-AMB) or

as a lipid formulation liposomal amphotericin B (L-AMB),

amphotericin B lipid complex (ABLC) or amphotericin B

colloidal dispersion (ABCD; Caillot et al., 1994; Ruhnke

et al., 2011).

Despite their wide use over several decades, the actual

incidence of Candida resistance to polyenes is rare, but can

sometimes arise through a reduction in the ergosterol

content of the cell membrane (Sanglard et al., 2003;

Williams et al., 2011).

Azole antifungal agents are fungistatic through interfer-

ence with the fungal cytochrome P450-dependent enzyme

lanosterol 14a-demethylase (key enzyme in the biosynthesis

of ergosterol), which leads to an accumulation of aberrant

sterol intermediates and depletion of ergosterol in the fungal

cell membrane (Bossche et al., 1987; Henry et al., 2000;

Onyewu & Heitman, 2007; Williams et al., 2011).
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The first azoles developed were the imidazoles (micona-

zole and ketoconazole) for the systemic treatment of human

mycoses, followed by the first-generation triazoles (flucon-

azole and itraconazole; Onyewu & Heitman, 2007). The

imidazoles can be used to treat invasive disease, but are most

effective as topical therapies against cutaneous and mucocu-

taneous infections (Kyle & Dahl, 2004; Onyewu & Heitman,

2007). Both fluconazole and itraconazole are well absorbed

through the gut, which means that oral administration is an

effective mean of systemic delivery. Fluconazole has also

a good safety profile when given systemically, with few side

effects (Brammer et al., 1990; Onyewu & Heitman, 2007;

Williams et al., 2011). The low-toxicity profile, favorable

pharmacokinetics and general efficacy of fluconazole have

made it the predominant prophylactic and primary treatment

choice for invasive candidiasis for the past 20 years (Onyewu

& Heitman, 2007). However, since the triazoles fluconazole

and itraconazole have limitations related to their spectrum

of antifungal activity and their tolerability, efforts to develop

improved triazoles have led to the regulatory approval of

voriconazole (approved by the FDA in 2002) and posacon-

azole (approved by the FDA in 2006) (Bink et al., 2011;

Katragkou et al., 2008).

Certain Candida species are inherently resistant to azole

antifungals, and acquired resistance has also emerged in

recent years (Williams et al., 2011). The latter has mostly

emerged due to the inadvertent selection of resistant

subpopulations during exposure to azoles (Onyewu &

Heitman, 2007; White et al., 1998).

Echinocandins (caspafungin, micafungin and anidulafun-

gin) are the most recent advances in antifungal drug

development. These fungicidal compounds are semi-synthetic

amphiphilic lipopeptides composed of a cyclic hexapeptide

core linked to a variably configured lipid side chain (Onyewu

& Heitman, 2007). Echinocandins have a unique mechanism

of action that consists of the inhibition of the b-1,3-D-glucan

synthase, a predominant polysaccharide component of the

Ascomycete cell wall that maintains osmotic integrity and is

involved in cell division and growth. These three echinocan-

dins demonstrate a broad and similar spectrum of in vitro and

in vivo activity against most Candida species (Douglas, 2001;

Espinel-Ingroff et al., 2009; Onyewu & Heitman, 2007;

Pfaller et al., 2008).

Caspofungin, anidulafungin and micafungin are all well

tolerated without serious adverse effects (Morrison, 2006;

Onyewu & Heitman, 2007). However, the large size of these

compounds precludes oral formulations, and they are currently

only available for intravenous administration (Onishi et al.,

2000; Onyewu & Heitman, 2007). Each agent has achieved

therapeutic efficacy comparable to previously established

standard agents. In a study of adults with invasive candidiasis,

caspofungin treatment was equivalent to, but better tolerated

than amphotericin B (Mora-Duarte et al., 2002; Onyewu &

Heitman, 2007). Currently, caspofungin is regarded as reason-

able initial treatment for invasive Candida infections except

for C. parapsilosis, which has demonstrated less in vitro sensi-

tivity (Onyewu & Heitman, 2007; Saravolatz et al., 2003).

Echinocandin drugs demonstrate fungicidal activity and

low incidence of resistance (Onyewu & Heitman, 2007).

Nevertheless, as newer drugs, long-term studies are not yet

available, and significant resistance mechanisms may emerge

in the future (Onyewu & Heitman, 2007).

The group of nucleoside analogues is solely composed of

flucytosine. This antifungal agent is only used as a part of a

combination regimen due to the rapid emergence of resistance

against it (Francis & Walsh, 1992; Ruhnke et al., 2011;

Viviani, 1995). This is the only systemically used antifungal

for which therapeutic drug monitoring is established to avoid

toxic effects (Francis & Walsh, 1992; Pasqualotto et al.,

2007; Ruhnke et al., 2011).

In spite of the myriad of antifungal agents available, the

frequency of treatment failure is considerable. Indeed, in the

last few years, Candida species have evolved multiple

molecular strategies to exert drug resistance. The increase

in cases of infection caused by Candida strains, and the

consequent excessive use of antimicrobials, has favored the

emergence of resistance of these yeast species to conventional

antifungal agents over the past decades (Onyewu & Heitman,

2007; White et al., 2002). Nowadays, new approaches are

needed to improve the outcome of patients suffering

from Candida infections, because it seems unlikely that

the established standard treatment will drastically lower the

morbidity of mucocutaneous Candida infections and the high

mortality associated with invasive candidiasis (Van de

Veerdonk et al., 2010).

Therefore, this review will discuss the last advances in the

traditional antifungal therapy, and present an overview of

novel strategies for the treatment of Candida infections, with

a special focus on combined antifungal agents, antifungal

therapies with alternative compounds (extracts of plants and

isolated essential oils), adjuvant immunotherapy, photo-

dynamic therapy and laser therapy.

Candida infection alternative therapy

Combining antimicrobial agents therapy

In spite of the myriad of antifungal agents available, as

mentioned above, the frequency of treatment failure is

considerable, underscoring the necessity for new treatment

strategies. In vitro experiments suggest that combinations of

these agents might improve the antifungal efficacy (Baltch

et al., 2008; Tobudic et al., 2010a; Van de Veerdonk et al.,

2010). To note, for example, the synergistic effects obtained

recently between newer and more traditional antifungal agents

both in vitro and in vivo (Lewis & Kontoyiannis, 2001).

There are several predictable advantages in combinational

antifungal therapy, which include a wider spectrum and

potency of drug activity, faster antifungal effect, synergy,

lower dosing of toxic drug and reduced risk of antifungal

resistance. However, although the use of agents with different

mechanisms of action is a hallmark in current medical

therapies, the combinations have to be tested as they may be

antagonistic or clinically indifferent with additive side effects

(Lewis & Kontoyiannis, 2001).

There are several studies reporting positive results of

synergistic combinations. Recently, Tobudic et al. (2010b)

studied the in vitro activity and synergism of the combination

of amphotericin B and either caspofungin or posaconazole

against C. albicans biofilm cells. The combination of

amphotericin B and pozaconazole yielded synergism against
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biofilms of various C. albicans isolates (Bink et al., 2011;

Tobudic et al., 2010b). Caspofungin also demonstrated

synergistic effects in combination with amphotericin B,

which binds to membrane sterols. The mechanisms of

synergic or additive effects for these agents are likely to be

the inhibition of (1,3)-b-D-glucan formation by caspofungin

leading to cell wall damage, that would allow amphotericin B

easier access to the fungal cell membrane, where it binds to

membrane ergosterol, resulting in pore formation and cell

lysis (Franzot & Casadevall, 1997; Gahn et al., 2007).

Several studies support the combination of echinocandins

with other antifungal drugs to treat C. albicans biofilms (Bink

et al., 2011; Kuhn et al., 2002b; Pai, 2009). For example,

synergy effects were found for micafungin and fluconazole,

voriconazole or liposomal amphotericin B against Candida

species (Espinel-Ingroff et al., 2009; Nishi et al., 2009;

Olson et al., 2005). The triple combination of liposomal

amphotericin B, micafungin and flucytosine (Bink et al.,

2011; Pai, 2009), as well as the combination of flucytosine

and voriconazole has also been shown to improve the

treatment of C. parapsilosis infections (Bink et al., 2011;

Pai et al., 2008).

Therefore, combinational therapy has been shown to

enhance Candida eradication. For example, it was recently

shown that the use of a human antibody fragment, efungumab,

in combination with caspofungin enhanced the activity of this

agent in vivo (Espinel-Ingroff et al., 2009; Hodgetts et al.,

2008). Calcineurin inhibitors FK506 and cyclosporine A also

demonstrated a synergistic effect in combination with

fluconazole against C. albicans biofilms, both in vitro and

in vivo studies. The synergism observed was mediated via

direct inhibition of C. albicans calcineurin, which is known to

contribute to fluconazole resistance in biofilms (Bink et al.,

2011; Uppluri et al., 2008).

The combination of antibacterial agents with standard

concentrations of antifungal agents against C. albicans

biofilms has also been reported (Bink et al., 2011; Ku

et al., 2010; Miceli et al., 2009,). Indeed, Miceli et al (2009)

determined that the use of doxycycline at specific concentra-

tions improved the effect of both fluconazole and amphoteri-

cin B against C. albicans biofilms.

Due to the interesting results of combining antifungals

with doxycycline, Ku et al. (2010) determined the activity of

other antibacterial agents, including azithromycin, tigecycline

and vancomycin against C. albicans biofilms. Tigecycline

alone was the most active agent against C. albicans biofilms,

but its combination with amphotericin B, caspofungin and

fluconazole was not synergistic and in some cases even

inhibited the effect of the antifungal agents (Bink et al., 2011;

Ku et al., 2010). On the other hand, a synergism between

fluconazole and minocycline was observed against flucon-

azole-resistant C. albicans clinical isolates. This synergism

may have resulted from the enhancement of minocycline on

fluconazole penetrating through the biofilm as well as

interrupting the calcium balance instead of impacting on

the uptake and efflux on fluconazole (Bink et al., 2011;

Shi et al., 2010).

Although an interesting approach, it must be noted that

the combination of high doses of antibacterial agents

with standard concentrations of antifungal agents against

C. albicans biofilms may induce bacterial resistance

(Bink et al., 2011).

The combination of different antifungal therapies has not

yet demonstrated to result in additional efficacy for the

treatment of invasive candidiasis in clinical trials (Van de

Veerdonk et al., 2010). In fact, synergism and antagonism are

in vitro concepts that are difficult to translate into clinical

practice. Consequently, although the evidence of synergism of

antifungal combinational therapy in vitro may represent a

first step in establishing appropriate antifungal therapy

(Bink et al., 2011), additional research is needed regarding

the efficacy of these combinations in randomized clinical

trials (Espinel-Ingroff et al., 2009).

Natural compounds as agents for antifungal therapy

Several new therapies are being developed based on medi-

cinal plants, exploring the activity of their extracts, essential

oils and fractions against microorganisms (Anibal et al.,

2010). The use of natural products aimed the control of fungal

diseases is considered as an interesting alternative to

synthetic fungicides due to their lower negative impact,

reduced cost and adverse reactions to plant preparations

compared to modern conventional pharmaceuticals

(Doddanna et al., 2013).

Medicinal plants have always played a major role in the

development of medicine and public health (Doddanna et al.,

2013). At least 80% of the world population is estimated to be

still using traditional medicine, and plants represent a large

source of bioactive compounds, which have resulted in the

detection of a significant number of therapeutic properties

(Anibal et al., 2010; Barros et al., 2010a; Guimarães et al.,

2010; Pai et al., 2004; Supreetha et al., 2011). Indeed,

approximately 50% of the new chemical molecules found

between 2000 and 2006 have come from natural products

(Anibal et al., 2010; Newman & Cragg, 2007). Finding

naturally occurring compounds for use in pharmaceutical

applications has become an interesting approach (Barros

et al., 2010a; Carneiro et al., 2010; Guimarães et al., 2010).

However, the novel, complex and diverse chemical struc-

tures of the compounds obtained from the medicinal plants

require a more thorough investigation prior to their use

as novel antifungal agents. In this sense, the identification of

the medicinal plant extracts active against resistant Candida

clinical isolates and showing pathogen selectivity is important

from a practical point of view (Anibal et al., 2010).

The antifungal compounds of plants are not well known,

but the presence of flavonoids and terpenes and a certain

degree of lipophilicity might determine toxicity by the

interactions with the membrane constituents and their

arrangement (Anibal et al., 2010; Tomás-Barberán et al.,

1990). Such compounds can be obtained from wild plants and

algae, which are rich in bioactive compounds (Guimarães

et al., 2010; Silva et al., 2009), and have been reported to

have a variety of biological effects, including anti-oxidant,

anti-carcinogenic, anti-inflammatory and antimicrobial activ-

ities (Barros et al., 2010b; Tepe et al., 2004).

Many extracts of plants and isolated essential oils have

demonstrated to exert biological activity, in vivo and in vitro,

which has justified research on the characterization of their
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antimicrobial activity (Agarwal et al., 2010; Anibal et al.,

2010; Martı́nez et al., 1996).

The antimicrobial activity shown by plant oils is mainly due

to a number of phenolic and terpenoid compounds, which have

antibacterial or antifungal activity (Agarwal et al., 2010).

Agarwal et al. (2010) tested several plants oils, namely,

clove (Syzygium aromaticum), tulsi (Ocimum tenuiflorum),

ginger grass (Cymbogon martini va. matinii), tea tree

(Melaleuca alternifólia), ocimum tenuiflorum (Ocimum

tenuiflorum), castor (Ricinus communis), juniper

(Juniperus), malkangani (Celastrus paniculatus), coconut

(Cocos nucı́fera), peppermint (Mentha piperita), babchi

(Psoralea corylifolia), mahua (Madhuca longifólia), ginger

(Zingiber officinale), mustard (Sinapis), rose oil (Rose),

jasmine (Jasminum), eucalyptus (Eucalyptus), lavender

(Lavandula), linseed (Linum usitatissimum), neem

(Azadirachta indica), chamomile (Matricaria recutita),

sesame (Sesamum indicum), jyotishmati (Celastrus panicula-

tus), jojoba (Simmondsia chinensis), walnut (Juglans regia),

almond (Prunus dulcis), khus (Chrysopogon zizanioides),

wheatgerm (Triticum aestivum), chaulmoogra (Hydnocarpus

wightiana) and cade oil (Juniperus oxycedrus). Eighteen of

these selected plant oils were found to be effective, with

peppermint, eucalyptus, ginger grass and clove oils acting as

potent antifungal agents against C. albicans with better results

than fluconazole. The significant antifungal activity of these

oils suggests that they could serve as a source of compounds

with therapeutic potential against Candida-related infections

(Agarwal et al., 2010).

For its turn, Duarte et al. (2005) observed that the oil of

Achillea millefolium, Mikania glomerata and Stachys byzan-

tina have a strong activity against C. albicans, while Aloysia

triphylla, Anthemis nobilis, Cymbopogon martini, Cyperus

articulates, Cyperus rotundus, Lippia alba, Mentha arvensis

and Mentha piperita showed moderate activity (Anibal et al.,

2010; Duarte et al., 2005).

The antimicrobial nature of the essential oils isolated from

several Lamiaceae species has been attributed to the presence

of various substances, mainly the phenolic monoterpenes

thymol and carvacrol. The individual oil components were

tested, and thymol was found to be the most active substance

with the widest spectrum, followed by carvacrol, R-terpineol

and terpinen-4-ol, whereas p-cymene was reported to be the

least active (Dorman & Deans, 2000; Tepe et al., 2004). The

results of Tepe et al. (2004) are in agreement with the latter

case. However, the most active component was found to be

carvacrol, rather than thymol, as already seen in previous

studies (Cimanga et al., 2002; Cosentino et al., 1999,

Dorman & Deans, 2000; Tepe et al., 2004).

Anibal et al. (2010) reported some studies where activity

against strains of different Candida species were observed

using the extracts of Mentha piperita, Arrabidaea chica,

Rosmarinus officinalis, Tabebuia avellanedae, Syzygium

cumini, Punica granatum, Casearia sylvestris and Arctium

lappa. For its turn, Zhang et al. (2006a) observed that the

fractions TTS-12 and TTS-15 of Tribulus terrestris had

significant antifungal activities against the five yeasts

tested: C. albicans, C. glabrata, C. parapsilosis, C. tropicalis

and Cryptococcus neoformans (Anibal et al., 2010;

Zhang et al., 2006a).

The casbane diterpene fraction extracted from Croton

nepataefolius (an aromatic plant native of the Northeast of

Brazil extensively used in folk medicine as a sedative

and antispasmodic agent) showed antimicrobial activity

against some microorganisms tested, namely, C. albicans

and C. tropicalis (Carneiro et al., 2010).

Previous studies showed that the ethanolic extracts of some

Italian and Ethiopian plants have antimycotic activities

against C. albicans (Abdullah et al., 2013), as well as the

ethanolic extract of ginger powder. In addition, Silva et al.

(2001) investigated ethanol extracts from leaves of Annona

crassiflora and A. coriacea, and the fruits of Solanum

lycocarpum and S. grandiflorum against 52 strains of

C. albicans, four strains of C. tropicalis and three strains

of C. krusei clinical isolates. Among these, leaves of A.

crassiflora had the greatest antifungal activity, being active

against all the microorganisms tested (Silva et al., 2001).

Alves et al. (2014) evaluated the potential antifungal

effect of phenolic compounds (gallic acid, catechin, luteolin

and quercetin) identified from flowers of the Northeastern

Portugal, against Candida planktonic and biofilm cells. In

that study, Gallic acid presented the highest antifungal effect

against different planktonic Candida species (C. albicans,

C. glabrata, C. parapsilosis, C. tropicalis) and catechin

showed a similar effect only against C. albicans cells. In

biofilm evaluation, gallic acid and quercetin demonstrated a

slight effect against the different Candida species studied.

Barros et al. (2013b) performed a screening of the

antifungal potential of a phenolic extract of Cistus ladanifer

from Northeastern Portugal, against different Candida spe-

cies. The results presented a strong inhibition of C. albicans,

C. glabrata and C. parapsilosis growth (MIC50.05 mg/mL),

and a moderate inhibition of C. tropicalis growth

(MIC¼ 0.625 mg/mL; Barros et al., 2013b). The same

authors studied the antifungal potential of a phenolic extract

of Castanea sativa, Filipendula ulmaria and Rosa micrantha

flowers from Northeastern Portugal, against the mentioned

Candida species. Overall, extracts of C. sativa, F. ulmaria and

R. micrantha revealed promising antifungal effects against

Candida species, especially in the latter. The stronger effect

showed by R. micrantha extracts against all Candida species

and, particularly its fungicide effects in C. glabrata, might be

related to the presence of flavonoids [e.g. (+)-catechin and

procyanidin dimers and trimers] that were inexistent in the

other samples (Barros et al., 2013a).

However, in spite of the promising results, these are only

preliminary studies and the information available regarding

active plants against Candida species has not yet resulted in

effective formulations for human use. In particular, studies

on the effect of these compounds against Candida biofilms

have been scarce, and have indicated that high concentrations

might be needed to obtain some effect on these structures

(Alves et al., 2014).

Immunotherapeutic approaches

New knowledge on the mechanisms of host defense against

Candida infections has led to the development of novel

immunotherapeutic approaches to combat these pathogens.

Current strategies being developed include vaccination,
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therapeutic antibodies, recombinant cytokines and adop-

tive transfer of primed immune cells (Table 1; Van de

Veerdonk et al., 2010).

Vaccination

Although vaccination against Candida infections is not yet

clinically available, there are many vaccine approaches

that seem to be promising, with positive results in animal

tests, as those involving the use of diphtheria toxoid CRM197

conjugated with the algal antigen laminarin (Torosantucci

et al., 2005; Van de Veerdonk et al., 2010); mannan protein

conjugates (Han et al., 1999; Van de Veerdonk et al., 2010);

adhesins Als1p and Als3p (Ibrahim et al., 2005, Spellberg

et al., 2005, 2006;Van De Veerdonk et al., 2010); and live-

attenuated Candida or low virulent CA2 strain (Van de

Veerdonk et al., 2010). However, these strategies still need to

be assessed for clinical efficacy and safety in humans. An

especial challenge is the immunization of immunocomprom-

ised patients with Candida infections, since a successful

vaccination is dependent on the appropriate host defense

mechanisms to provide protection.

The current vaccines can be improved by the use of

adjuvants. Recent knowledge into adjuvanticity indicates that

it is possible to use adjuvants to shape the kind of adaptive

immune response elicited by a vaccine, by inducing different

cytokine profiles (Eisenbarth et al., 2008; Mata-Haro et al.,

2007; McCluskie & Krieg, 2006). This can be used to

specifically induce optimal defense against a pathogen. For

example, the adjuvant should ideally facilitate a strong Th1

[e.g. alum, b-glucan (Leibundgut-Landmann et al., 2008;

Lin et al., 2009; Van de Veerdonk et al., 2010)] and Th17

[e.g. mannans, dectin-2, b-glucan (Leibundgut-Landmann

et al., 2008; Robinson et al., 2009; Van de Veerdonk et al.,

2010)] response for disseminated and mucosal candidiasis,

respectively.

Antibodies

Immunotherapy with anti-Candida antibodies is another

recent alternative to treat or prevent Candida infections,

which is particularly promising as a therapy for immuno-

compromised patients. These antibodies, induced artificially,

have been tested in animal models and patients with

candidiasis. Efungumab is an example of a human recom-

binant antibody that was developed against the fungal-specific

heat shock protein 90 (Hsp90; Matthews, 1994). This

antibody has been assessed in combination with amphotericin

B (Pachl et al., 2006; Van de Veerdonk et al., 2010) and

caspofungin (Hodgetts et al., 2008; Van de Veerdonk et al.,

2010) for the treatment of candidiasis with positive outcomes

(Hodgetts et al., 2008; Pachl et al., 2006; Van de Veerdonk

et al., 2010).

Other approaches include the use of monoclonal antibodies

(mAbs) and immune serum from mice vaccinated with

Candida-mannan containing liposomes (Han & Cutler,

1995; Han et al., 2000; Van de Veerdonk et al., 2010),

recombinant anti-mannan antibodies (Van de Veerdonk et al.,

2010; Zhang et al., 2006b), protective antibodies induced

by synthetic glycopeptide vaccines (Van de Veerdonk et al.,

2010; Xin et al., 2008), anti-b-glucan antibodies induced by T
ab
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b-glucanconjugate vaccines (Pietrella et al., 2010; Van de

Veerdonk et al., 2010) and idiotypic antibodies directed

against KT4 mAbs, which neutralize the effect of the yeast

killer toxin YKT (Polonelli et al., 1994; Van de Veerdonk

et al., 2010).

Cytokine therapy

Cytokines can be used to modulate the immunological

response during infections. The granulocyte-macrophage

colony-stimulating factor (GM-CSF) has been investigated

for this purpose. GM-CSF enhances phagocytosis and the

release of reactive oxygen species (ROS) by polymorpho-

nuclear leucocytes (PMNs), prolongs the survival of neutro-

phils by inhibiting the programmed cell death (Brach et al.,

1992; Van de Veerdonk et al., 2010), upregulates the

expression of dectin-1 on macrophages (Willment et al.,

2003) and upregulates chititriosidase promoting fungicidal

activity by cleaving the chitin present in the inner cell wall of

C. albicans (Van de Veerdonk et al., 2010; Van Eijk et al.,

2005). The administration of GM-CSF to both humans and

mice significantly reduced the fungal outgrowth (Gaviria

et al., 1999; Kullberg et al., 1999; Van de Veerdonk et al.,

2010). Furthermore, its use as an adjuvant to antifungal

therapy has led to clinical and mycological improvements

(Kullberg et al., 2004; Shahar et al., 1999; Van de Veerdonk

et al., 2010; Vazquez et al., 1998).

Interferon gamma (IFNg), produced by T and NK cells,

increases macrophage cytotoxicity and kills intracellular

pathogens (Hübel et al., 2002; Van de Veerdonk et al.,

2010). IFNg therapy is most effective in patients with

granulomatous disease, reducing the incidence of infections,

with several studies indicating its benefit for the treatment of

Candida infections (Bodasing et al., 2002; Dignani et al.,

2005; Van de Veerdonk et al., 2010). However, the particular

effectors functions are debatable. Some works indicate an

increase of the anti-Candida activity of the macrophages

(Baltch et al., 2005; Brummer et al., 1985, 1991; Redmond

et al., 1993; Van de Veerdonk et al., 2010), others report no

effect on macrophage activity (Marcil et al., 2002; Van de

Veerdonk et al., 2010), and some works report an increased

capacity of PMNs to kill Candida.

Adoptive transfer of primed immune cells

Antigen primed dendritic cells (DCs) can be used as another

approach for antifungal immunotherapy. For example, by

ex vivo priming of dendritic cells with antigens that induce

specific cytokine profiles, followed by infusion in the patient

(Bacci et al., 2002; Van de Veerdonk et al., 2010), it is

possible to angle the adaptive immune response towards anti-

Candida effector functions (Bozza et al., 2004; Van de

Veerdonk et al., 2010). Indeed, it has been shown that DC

vaccination induces Th1-dependent antifungal protection in

mice that received allogeneic bone marrow transplants

(Bozza et al., 2003; Van de Veerdonk et al., 2010).

Furthermore, adoptive transfer of anti-Candida T cells has

been proposed as potential immunotherapy in patients with

candidiasis after hematopoietic stem cell transplantation

(Tramsen et al., 2007; Van de Veerdonk et al., 2010).

These T cells do not appear to be affected by cryopreservation

(Tramsen et al., 2007), so it might be possible to generate

anti-Candida T cells before the patient reaches an immuno-

compromised status, and adoptively transfer these cells

during infection when the patients are immunocompromised

(Van de Veerdonk et al., 2010).

Low-level laser therapy

Laser light has been evaluated, both in vitro and in vivo, as an

alternative antimicrobial treatment (Schwarz et al., 2005,

2006; Sennhenn-Kirchner et al., 2009; Soukos et al., 2003).

Low-level laser therapy (LLLT) uses low doses of visible

light of appropriate wavelength to activate existing biological

chromophores in cells, leading to the generation of ROS

(Marques et al., 2004; Souza et al., 2010). The LLLT

sensitization depends on parameters related to the laser such

as wavelength, power density or light intensity that reaches to

the tissue and the energy density that is responsible for the

desired radiation effect (De Souza et al., 2006; Wilson &

Mia, 1993).

The significant antimicrobial potential of LLLT has

been documented in vitro, on diverse microbial species, and

in vivo, in the treatment of gingivitis, periodontitis and other

oral diseases (Basso et al., 2011; Lino et al., 2011; Moritz

et al., 1998; Nussbaum et al., 2003), with most studies

focusing on bacteria and few reporting its effect on fungi

(De Souza et al., 2006; Donnelly et al., 2007; Ward et al.,

1996). The antimicrobial mechanism of LLLT on bacteria

seems to be related to thermal effects and photo-disruption

(Basso et al., 2011; Maver-Biscanin et al., 2004). LLLT may

not cause immediate cell death, but it causes sublethal

damages, such as destruction of the cell wall and accumu-

lation of denatured proteins in the bacterial cytoplasm (Basso

et al., 2011).

The scarce works using LLLT against fungi involved

Candida species, and the LLLT sources used included a

near infrared indium gallium arsenide phosphide

(InGaAsP) diode laser prototype (LASERTable; 780 ± 3 nm

wavelength, 0.4 W power output; Basso et al., 2011), a

gallium–aluminum–arsenide (GaAlAs) laser (660 nm wave-

length, 0.035 W power output, 0.38 cm2 illuminated area;

Souza et al., 2010), an erbium:yttrium–aluminium–garnet

(Er:YAG) laser (2940 nm wavelength) and a diode laser

(810 nm wavelength; Sennhenn-Kirchner et al., 2009).

Although some studies have reported the fungicide effect

(reductions in log CFU/ml) of LLLT alone (Maver-Biscanin

et al., 2005; Souza et al., 2010), most in vitro works

demonstrate that the use of a photosensitizer associated with

the laser is very effective against bacteria, yeasts, virus and

parasites (De Souza et al., 2006; Sarkar & Wilson, 1993;

Wainwright, 1998; Wilson & Mia, 1993).

Despite the promising results demonstrated by this new

approach for the treatment of Candida infection, much

research still need to be done in the area to consolidate the

existing findings.

Photodynamic therapy

Photodynamic therapy (PDT) has been successfully applied to

the treatment of malignant neoplasia, particularly among head

and neck related tumors. Nowadays, the use of PDT to treat
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other pathologies such as systemic reumatoid arthritis, fungal

and bacterial infections has been investigated (De Souza

et al., 2006; Teichert et al., 2002; Usacheva et al., 2001;

Williams et al., 2003).

PDT is based on the activation of photosensitizers added

to cells and microorganisms, by an appropriate wavelength

of light in the presence of oxygen, promoting a phototoxic

response of the cells, usually via oxidative damage

(Dougherty et al., 1998; Mima et al., 2010). Indeed, these

photosensitizer products are cytotoxic to the target cell,

killing the microorganism by causing disarrangements in the

cell wall and DNA damage (Romanova et al., 2003; Souza

et al., 2010). This effect leads to alterations in the mitochon-

drial gradient of ionic concentration, interfering in the

respiratory chain, inhibiting or stimulating ATP synthesis

and at the same time producing singlet oxygen, toxic to the

cells (Bortoletto et al., 2004).

The PDT sensitization depends on the parameters related

to the concentration, time of incubation and type of

photosensitizer, as well as the physiological state of the

microorganisms, time of exposure and energy density of

the laser (De Souza et al., 2006; Souza et al., 2010;

Teichert et al., 2002; Wilson & Mia, 1993).

Since most microbial species possess only specific

wavelength ranges of endogenous photosensitive compo-

nents, the use of an exogenous photosensitizer able to absorb

light and to initiate the formation of free radicals expands

the range of photonics interventions (Souza et al., 2010;

Wilson et al., 1992). In this respect, the action of different

photosensitizers, mainly phenothiazine dyes, porphyrins and

phthalocyanines, has been investigated. Many studies have

demonstrated the efficacy of phenothiazine dyes such as

methylene blue and toluidine blue in PDT for the reduction

of fungi (De Souza et al., 2006; Giroldo et al., 2009; Souza

et al., 2010; Teichert et al., 2002). Another substance that

can be used as a photosensitizer is malachite green, a

cationic dye of the triarylmethane family (which also

includes crystal violet).

PDT using the mentioned photosensitizers promotes an

effective action in the reduction of the number of Candida

cells, especially C. albicans. Indeed, some studies confirm

these results (De Souza et al., 2006; Giroldo et al., 2009;

Prates et al., 2007; Souza et al., 2010; Wilson & Mia,

1993). Giroldo et al. (2009) studied the photosensitization

of C. albicans using the combination of the photosensitizer

methylene blue with a diode laser (684 nm and 28 J/cm2)

and obtained a significant growth decrease. For its turn,

de Souza et al. (2006) studied the photosensitization of

different Candida species with methylene blue (0.1 mg/ml)

and InGaAlP laser light (685 nm and 28 J/cm2) and found a

reduction in the numbers of CFU/ml of 91.6% of C. krusei,

88.6% of C. albicans, 84.8% of C. dubliniensis and 82.3% of

C. tropicalis. In a study by Wilson & Mia (1993) a

reduction in the numbers of CFU/ml of 77% for C. albicans,

65% for C. tropicalis, 63% for C. stellatoidea and 40% for

C. kefyr was reported when these species were subjected

to toluidine blue combined with helium–neon (He–Ne)

laser light (632.8 nm and 66.36 J/cm2). Other study with

C. albicans sensitized in vitro by toluidine blue, thionin

and crystal violet associated with He–Ne laser, showed

a higher microbial reduction with toluidine blue

(Wilson & Mia, 1993). This photosensitizer was also the

most effective in a study by Souza et al. (2010) against

different Candida species, where methylene blue, malachite

green and low-power laser irradiation alone were also tested.

It is important to mention that divergent results have been

obtained on studies concerning the application of photo-

sensitizers alone in the absence of laser irradiation. While

some show no significant difference when compared with the

control groups, others demonstrate the presence of antifungal

activity (Calzavara-Pinton et al., 2005; Souza et al., 2010;

Usacheva et al., 2001; Wainwright & Crossley, 2002). These

divergences reported in the literature might be due to the lack

of pre-defined parameters for the use of PDT, a fact that

impairs a reliable comparison between the results obtained in

different studies.

In consequence of the use of non-specific oxidizing agents,

organisms resistant to conventional antifungal agents may be

successfully killed by PDT and the development of resistance

to this therapy seems unlikely, making this a very promising

therapy (Mima et al., 2010). However, evidently, the know-

ledge about the application of PDT and also LLLT to Candida

species is even scarcer and demands for more and reliable

studies in the area.

Concluding remarks

Candida infections account for a high burden of morbidity

and mortality. Prolonged usage of antifungal agents to treat

infections caused by Candida species has led to the

emergence of resistance to conventional drugs. Considering

this, new therapeutic approaches are urgently needed to

improve the outcome of the patients, as the currently available

treatment options have not reduced the mortality and

morbidity associated with Candida infections over the

recent years.

Possible solutions to improve the efficacy of the treatment

would be the use of combined antifungal drugs and the

exploration of alternatives compounds as antifungal agents

(extracts of plants and isolated essential oils). One of the most

promissory sources for the research of new agents is actually

found in plants, which have compounds with antimicrobial

properties that are only now beginning to be studied. The

investigation of these active principles may be a potential area

that must be explored.

Other solution would be the use of immunotherapy,

which aims at improving host defense against Candida. The

increase in understanding the mechanisms that underlie

the pathogenesis of Candida infection could bring closer the

development of efficient and feasible immunotherapeutic

strategies.

Another approach discussed in the present review relates to

the use of PDT and LLLT. Although, the significant fungicide

potential of LLLT and PDT has been documented and proved

in several studies it is evident that the knowledge about the

application of these therapies to Candida species is even

scarcer and demands for more and reliable studies in the area.

Therefore, although several methodologies have been

developing in the last years to treat Candida infections,

there is still much to do.
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Bortoletto R, Silva NS, Zângaro RA, et al. (2004). Mitochondrial
membrane potential after low-power laser irradiation. Lasers Med Sci
18:204–6.

Bossche HV, Willemsens G, Marichal P. (1987). Anti-Candida drugs –
the biochemical basis for their activity. Crit Rev Microb 15:57–72.

Bozza S, Montagnoli C, Gaziano R, et al. (2004). Dendritic cell-based
vaccination against opportunistic fungi. Vaccine 22:857–64.

Bozza S, Perruccio K, Montagnoli C, et al. (2003). A dendritic cell
vaccine against invasive aspergillosis in allogeneic hematopoietic
transplantation. Blood 102:3807–14.

Brach M, Devos S, Gruss H, Herrmann F. (1992). Prolongation of
survival of human polymorphonuclear neutrophils by granulocyte-
macrophage colony-stimulating factor is caused by inhibition of
programmed cell death. Blood 80:2920–4.

Brajtburg J, Powderly WG, Kobayashi GS, Medoff G. (1990).
Amphotericin B: current understanding of mechanisms of action.
Antimicrob Agents Chemother 34:183–8.

Brammer KW, Farrow PR, Faulkner JK. (1990). Pharmacokinetics and
tissue penetration of fluconazole in humans. Rev Infect Dis 12:
S318–26.

Brummer E, Hanson LH, Stevens DA. (1991). Kinetics and requirements
for activation of macrophages for fungicidal activity: effect of protein
synthesis inhibitors and immunosuppressants on activation and
fungicidal mechanism. Cell Immunol 132:236–45.

Brummer E, Morrison CJ, Stevens DA. (1985). Recombinant and
natural gamma-interferon activation of macrophages in vitro: different
dose requirements for induction of killing activity against phago-
cytizable and nonphagocytizable fungi. Infect Immun 49:724–30.

Caillot D, Reny G, Solary E, et al. (1994). A controlled trial of the
tolerance of amphotericin B infused in dextrose or in Intralipid in
patients with haematological malignancies. J Antimicrob Chemother
33:603–13.

Calzavara-Pinton PG, Venturini M, Sala R. (2005). A comprehensive
overview of photodynamic therapy in the treatment of superficial
fungal infections of the skin. J Photochem Photobiol B 78:1–6.

Carneiro VA, Santos HSD, Arruda FVS, et al. (2010). Casbane diterpene
as a promising natural antimicrobial agent against biofilm-associated
infections. Molecules 16:190–201.

Chandra J, Kuhn DM, Mukherjee PK, et al. (2001). Biofilm formation by
the fungal pathogen Candida albicans: development, architecture, and
drug resistance. J Bacteriol 183:5385–94.

Cimanga K, Kambu K, Tona L, et al. (2002). Correlation between
chemical composition and antibacterial activity of essential oils of
some aromatic medicinal plants growing in the Democratic Republic
of Congo. J Ethnopharmacol 79:213–20.

Colombo AL, Nucci M, Salomão R, et al. (1999). High rate of non-
albicans candidemia in Brazilian tertiary care hospitals. Diagnos
Microbiol Infect Dis 34:281–6.

Cosentino S, Tuberoso CIG, Pisano B, et al. (1999). In-vitro antimicro-
bial activity and chemical composition of Sardinian Thymus essential
oils. Lett Appl Microbiol 29:130–5.

602 M. E. Rodrigues et al. Crit Rev Microbiol, 2016; 42(4): 594–606



De Souza SC, Junqueira JC, Balducci I, et al. (2006). Photosensitization
of different Candida species by low power laser light. J Photochem
Photobiol B 83:34–8.

Deray G. (2002). Amphotericin B nephrotoxicity. J Antimicrob
Chemother 49:37–41.

Diekema DJ, Messer SA, Brueggemann AB, et al. (2002). Epidemiology
of Candidemia: 3-year results from the emerging infections and the
epidemiology of Iowa organisms study. J Clin Microbiol 40:
1298–302.

Dignani MC, Rex JH, Chan KW, et al. (2005). Immunomodulation with
interferon-gamma and colony-stimulating factors for refractory fungal
infections in patients with leukemia. Cancer 104:199–204.

Doddanna SJ, Patel S, Sundarrao MA, Veerabhadrappa RS. (2013).
Antimicrobial activity of plant extracts on Candida albicans: an in
vitro study. Indian J Dent Res 24:401–5.

Donnelly RF, Mccarron PA, Tunney MM, David Woolfson A. (2007).
Potential of photodynamic therapy in treatment of fungal infections of
the mouth. Design and characterisation of a mucoadhesive patch
containing toluidine blue O. J Photochem Photobiol B 86:59–69.

Dorman HJD, Deans SG. (2000). Antimicrobial agents from plants:
antibacterial activity of plant volatile oils. J Appl Microbiol 88:
308–16.

Dougherty TJ, Gomer CJ, Henderson BW, et al. (1998). Photodynamic
therapy. J Natl Cancer Inst 90:889–905.

Douglas CM. (2001). Fungal beta(1,3)-D-glucan synthesis. Med Mycol
39:55–66.

Duarte MCT, Figueira GM, Sartoratto A, et al. (2005). Anti-Candida
activity of Brazilian medicinal plants. J Ethnopharmacol 97:305–11.

Dupont BF, Lortholary O, Ostrosky-Zeichner L, et al. (2009). Treatment
of candidemia and invasive candidiasis in the intensive care unit: post
hoc analysis of a randomized, controlled trial comparing micafungin
and liposomal amphotericin B. Crit Care 13:159.

Eisenbarth SC, Colegio OR, O/’Connor W, et al. (2008). Crucial role for
the Nalp3 inflammasome in the immunostimulatory properties of
aluminium adjuvants. Nature 453:1122–6.
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