142 research outputs found

    Bag-Level Aggregation for Multiple Instance Active Learning in Instance Classification Problems

    Full text link
    A growing number of applications, e.g. video surveillance and medical image analysis, require training recognition systems from large amounts of weakly annotated data while some targeted interactions with a domain expert are allowed to improve the training process. In such cases, active learning (AL) can reduce labeling costs for training a classifier by querying the expert to provide the labels of most informative instances. This paper focuses on AL methods for instance classification problems in multiple instance learning (MIL), where data is arranged into sets, called bags, that are weakly labeled. Most AL methods focus on single instance learning problems. These methods are not suitable for MIL problems because they cannot account for the bag structure of data. In this paper, new methods for bag-level aggregation of instance informativeness are proposed for multiple instance active learning (MIAL). The \textit{aggregated informativeness} method identifies the most informative instances based on classifier uncertainty, and queries bags incorporating the most information. The other proposed method, called \textit{cluster-based aggregative sampling}, clusters data hierarchically in the instance space. The informativeness of instances is assessed by considering bag labels, inferred instance labels, and the proportion of labels that remain to be discovered in clusters. Both proposed methods significantly outperform reference methods in extensive experiments using benchmark data from several application domains. Results indicate that using an appropriate strategy to address MIAL problems yields a significant reduction in the number of queries needed to achieve the same level of performance as single instance AL methods

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    Feature Learning from Spectrograms for Assessment of Personality Traits

    Full text link
    Several methods have recently been proposed to analyze speech and automatically infer the personality of the speaker. These methods often rely on prosodic and other hand crafted speech processing features extracted with off-the-shelf toolboxes. To achieve high accuracy, numerous features are typically extracted using complex and highly parameterized algorithms. In this paper, a new method based on feature learning and spectrogram analysis is proposed to simplify the feature extraction process while maintaining a high level of accuracy. The proposed method learns a dictionary of discriminant features from patches extracted in the spectrogram representations of training speech segments. Each speech segment is then encoded using the dictionary, and the resulting feature set is used to perform classification of personality traits. Experiments indicate that the proposed method achieves state-of-the-art results with a significant reduction in complexity when compared to the most recent reference methods. The number of features, and difficulties linked to the feature extraction process are greatly reduced as only one type of descriptors is used, for which the 6 parameters can be tuned automatically. In contrast, the simplest reference method uses 4 types of descriptors to which 6 functionals are applied, resulting in over 20 parameters to be tuned.Comment: 12 pages, 3 figure

    Le doctorat en crise ?

    Get PDF
    En mai dernier, se tenait à Montréal une importante conférence sur l’avenir des programmes d’études supérieures à l’université McGill de Montréal. Parrainé par l’Institue for the Public Life of Arts and Ideas, l’évènement intitulé Future Humanities : Transforming Graduate Studies for the Future of Canada rassemblait plus d’une centaine de chercheurs, professeurs, étudiants et représentants d’institutions intéressés par le sujet

    Finance and Differential Accumulation in the Global Pharmaceutical Industry

    Get PDF

    Étude des propriétés de transport dans les hydrogels de curdlan

    Full text link
    Les hydrogels de polysaccharide sont des biomatériaux utilisés comme matrices à libération contrôlée de médicaments et comme structures modèles pour l’étude de nombreux systèmes biologiques dont les biofilms bactériens et les mucus. Dans tous les cas, le transport de médicaments ou de nutriments à l’intérieur d’une matrice d’hydrogel joue un rôle de premier plan. Ainsi, l’étude des propriétés de transport dans les hydrogels s’avère un enjeu très important au niveau de plusieurs applications. Dans cet ouvrage, le curdlan, un polysaccharide neutre d’origine bactérienne et formé d’unités répétitives β-D-(1→3) glucose, est utilisé comme hydrogel modèle. Le curdlan a la propriété de former des thermogels de différentes conformations selon la température à laquelle une suspension aqueuse est incubée. La caractérisation in situ de la formation des hydrogels de curdlan thermoréversibles et thermo-irréversibles a tout d’abord été réalisée par spectroscopie infrarouge à transformée de Fourier (FT-IR) en mode réflexion totale atténuée à température variable. Les résultats ont permis d’optimiser les conditions de gélation, menant ainsi à la formation reproductible des hydrogels. Les caractérisations structurales des hydrogels hydratés, réalisées par imagerie FT-IR, par microscopie électronique à balayage en mode environnemental (eSEM) et par microscopie à force atomique (AFM), ont permis de visualiser les différentes morphologies susceptibles d’influencer la diffusion d’analytes dans les gels. Nos résultats montrent que les deux types d’hydrogels de curdlan ont des architectures distinctes à l’échelle microscopique. La combinaison de la spectroscopie de résonance magnétique nucléaire (RMN) à gradients pulsés et de l’imagerie RMN a permis d’étudier l’autodiffusion et la diffusion mutuelle sur un même système dans des conditions expérimentales similaires. Nous avons observé que la diffusion des molécules dans les gels est ralentie par rapport à celle mesurée en solution aqueuse. Les mesures d’autodiffusion, effectuées sur une série d’analytes de diverses tailles dans les deux types d’hydrogels de curdlan, montrent que le coefficient d’autodiffusion relatif décroit en fonction de la taille de l’analyte. De plus, nos résultats suggèrent que l’équivalence entre les coefficients d’autodiffusion et de diffusion mutuelle dans les hydrogels de curdlan thermo-irréversibles est principalement due au fait que l’environnement sondé par les analytes durant une expérience d’autodiffusion est représentatif de celui exploré durant une expérience de diffusion mutuelle. Dans de telles conditions, nos résultats montrent que la RMN à gradients pulsés peut s’avérer une approche très avantageuse afin de caractériser des systèmes à libération contrôlée de médicaments. D’autres expériences de diffusion mutuelle, menées sur une macromolécule de dextran, montrent un coefficient de diffusion mutuelle inférieur au coefficient d’autodiffusion sur un même gel de curdlan. L’écart mesuré entre les deux modes de transport est attribué au volume différent de l’environnement sondé durant les deux mesures. Les coefficients d’autodiffusion et de diffusion mutuelle similaires, mesurés dans les deux types de gels de curdlan pour les différents analytes étudiés, suggèrent une influence limitée de l’architecture microscopique de ces gels sur leurs propriétés de transport. Il est conclu que les interactions affectant la diffusion des analytes étudiés dans les hydrogels de curdlan se situent à l’échelle moléculaire.Polysaccharide hydrogels are biomaterials used as controlled drug delivery matrices and serve as model scaffolds for the study of many biological systems like bacterial biofilms and mucus. In every case, the transport of drugs or nutriments across a hydrogel matrix is of prime importance. Therefore, the study of transport properties in hydrogels is an important issue for many fields of application. In this work, curdlan, a neutral bacterial polysaccharide made of β-D-(1→3) glucose repeating units, is used as a model hydrogel. Aqueous suspensions of curdlan can form thermogels of different conformations depending on the incubation temperature. In situ characterization of the preparation of thermo-reversible (low-set) and thermo-irreversible (high-set) curdlan hydrogels was first carried out using variable temperature attenuated total reflection (ATR) Fourier transform infrared spectroscopy (FT-IR). The results allowed optimization of the gelling conditions leading to reproducible gel samples. Structural characterization of fully hydrated hydrogels, carried out by FT-IR imaging, environmental scanning electron microscopy (eSEM) and atomic force microscopy (AFM), allowed visualization of the different gel morphologies susceptible of influencing the diffusion of analytes in hydrogels. Our results show that both types of curdlan hydrogels have distinct microscopic architectures. The combination of pulsed field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy and NMR profiling allowed the study of self-diffusion and mutual diffusion on the same hydrogel system in similar experimental conditions. We showed that the diffusion of analytes in the gels is slower than in the aqueous solution. The diffusion experiments, carried out on a series of analytes of various sizes in both types of curdlan gels, show a decrease of the relative self-diffusion coefficient as a function of the analyte size. In addition, our results suggest that the equivalence between the self-diffusion and mutual-diffusion coefficients measured in the high-set curdlan gels is mainly due to the fact that the environment probed by the analytes during a self-diffusion experiment is representative of the one probed during a mutual-diffusion experiment. In such conditions, our results show that PFG NMR may present a valuable approach for the characterization of controlled drug release systems. Additional experiments show that the mutual-diffusion coefficient of dextran macromolecules is smaller than its self-diffusion coefficient in the same curdlan hydrogel. The difference between both transport rates is attributed to the different environment volumes probed by the analytes during the measurements. The similarities observed between the self-diffusion and mutual-diffusion coefficients, measured in both types of curdlan gels for all investigated analytes, suggest a limited influence of the microscopic gel architecture on its transport properties. It is therefore concluded that the interactions affecting the diffusion of the investigated analytes in the curdlan hydrogels lie at the molecular scale

    Capital, Knowledge and Power in the Global Pharmaceutical Business ; structural competition for differential accumulation

    Get PDF

    Ken McCormick, Veblen in Plain English; A complete Introduction to Thorstein Veblen’s Economics

    Get PDF
    Une difficulté récurrente à laquelle j’ai longtemps été confronté en enseignant l’économie de Veblen au premier cycle de l’université était de pouvoir proposer un ouvrage d’introduction simple et cohérent capable de synthétiser la pensée générale de Veblen sur l’économie. Bien que la littérature sur Veblen soit abondante, bien peu d’ouvrages en français ou en anglais réussissent à présenter de manière succincte et efficace la pensée économique de l’auteur dont les éléments centraux sont éparp..

    L’aide financière à l’industrie pharmaceutique québécoise : le jeu en vaut-il la chandelle?

    Get PDF
    Le développement de l’industrie pharmaceutique québécoise est souvent considéré comme l’histoire d’une réussite industrielle issue d’une politique ciblée d’aide aux industries à haute valeur ajoutée. Toutefois, le Québec paie cher ses incitatifs financiers au secteur pharmaceutique à travers une série de mesures qui vont au-delà d’une simple politique de brevet : 1) crédits d’impôt, 2) politique de prix généreuse, 3) règle des 15 ans et 4) subventions directes aux entreprises. En contrepartie, le Québec bénéficie de retombées économiques importantes, dont les dépenses en recherche et développement (R&D) et la création d’emploi dans un secteur à haute valeur ajoutée. Cet article chiffre le montant de l’aide publique reçue par l’industrie pharmaceutique au Québec et compare ce montant aux retombées économiques de ce secteur au Québec. L’article démontre que les aides financières publiques accordées à l’industrie pharmaceutique québécoise pour encourager la R&D sont en fait de 1,81 à 6,76 fois supérieures à l’ensemble des dépenses nettes de l’industrie pharmaceutique québécoise en R&D.The development of Quebec’s pharmaceutical industry is often considered a success story resulting from Quebec’s specific policies supporting industries with high value-added. Quebec, however, pays a lump sum to provide financial incentives to the pharmaceutical sector through innovation policies that goes beyond patent policy: 1) tax credits 2) generous pricing policy 3)15-years rule and 4) direct subsidies to companies. In exchange for these policies, Quebec benefits from important economic spin-offs from the pharmaceutical sector, including investment in R&D, as well as job creation in a high value-added sector. The article sums up all public financial subsidies to Quebec’s pharmaceutical industry and compares the results to economic spin-offs generated by this industry. The article shows that public financial subsidies to Quebec’s pharmaceutical industry in order to support R&D is costing in fact from 1,81 to 6,76 times more than the total amount of net expenditures of Quebec’s pharmaceutical industry in R&D
    • …
    corecore