7,471 research outputs found

    Response to comments on "Differential Sensitivity to Human Communication in Dogs, Wolves, and Human Infants."

    Get PDF
    The comments by Fiset and Marshall-Pescini et al. raise important methodological issues and propose alternative accounts for our finding of perseverative search errors in dogs. Not denying that attentional processes and local enhancement are involved in such object search tasks, we provide here new evidence and argue that dogs’ behavior is affected by a combination of factors, including specific susceptibility to human communicative signals

    Limits on Lorentz Violation from the Highest Energy Cosmic Rays

    Full text link
    We place several new limits on Lorentz violating effects, which can modify particles' dispersion relations, by considering the highest energy cosmic rays observed. Since these are hadrons, this involves considering the partonic content of such cosmic rays. We get a number of bounds on differences in maximum propagation speeds, which are typically bounded at the 10^{-21} level, and on momentum dependent dispersion corrections of the form v = 1 +- p^2/Lambda^2, which typically bound Lambda > 10^{21} GeV, well above the Planck scale. For (CPT violating) dispersion correction of the form v = 1 + p/Lambda, the bounds are up to 15 orders of magnitude beyond the Planck scale.Comment: 24 pages, no figures. Added references, very slight changes. Version published in Physical Review

    Results for the response function determination of the Compact Neutron Spectrometer

    Full text link
    The Compact Neutron Spectrometer (CNS) is a Joint European Torus (JET) Enhancement Project, designed for fusion diagnostics in different plasma scenarios. The CNS is based on a liquid scintillator (BC501A) which allows good discrimination between neutron and gamma radiation. Neutron spectrometry with a BC501A spectrometer requires the use of a reliable, fully characterized detector. The determination of the response matrix was carried out at the Ion Accelerator Facility (PIAF) of the Physikalisch-Technische Bundesanstalt (PTB). This facility provides several monoenergetic beams (2.5, 8, 10, 12 and 14 MeV) and a 'white field'(Emax ~17 MeV), which allows for a full characterization of the spectrometer in the region of interest (from ~1.5 MeV to ~17 MeV. The energy of the incoming neutrons was determined by the time of flight method (TOF), with time resolution in the order of 1 ns. To check the response matrix, the measured pulse height spectra were unfolded with the code MAXED and the resulting energy distributions were compared with those obtained from TOF. The CNS project required modification of the PTB BC501A spectrometer design, to replace an analog data acquisition system (NIM modules) with a digital system developed by the 'Ente per le Nuove tecnologie, l'Energia e l'Ambiente' (ENEA). Results for the new digital system were evaluated using new software developed specifically for this project.Comment: Proceedings of FNDA 201

    X,Y,Z-Waves: Extended Structures in Nonlinear Lattices

    Get PDF
    Motivated by recent experimental and theoretical results on optical X-waves, we propose a new type of waveforms in 2D and 3D discrete media -- multi-legged extended nonlinear structures (ENS), built as arrays of lattice solitons (tiles or stones, in the 2D and 3D cases, respectively). First, we study the stability of the tiles and stones analytically, and then extend them numerically to complete ENS forms for both 2D and 3D lattices. The predicted patterns are relevant to a variety of physical settings, such as Bose-Einstein condensates in deep optical lattices, lattices built of microresonators, photorefractive crystals with optically induced lattices (in the 2D case) and others.Comment: 4 pages, 4 figure

    Group classification of (1+1)-Dimensional Schr\"odinger Equations with Potentials and Power Nonlinearities

    Full text link
    We perform the complete group classification in the class of nonlinear Schr\"odinger equations of the form iψt+ψxx+ψγψ+V(t,x)ψ=0i\psi_t+\psi_{xx}+|\psi|^\gamma\psi+V(t,x)\psi=0 where VV is an arbitrary complex-valued potential depending on tt and x,x, γ\gamma is a real non-zero constant. We construct all the possible inequivalent potentials for which these equations have non-trivial Lie symmetries using a combination of algebraic and compatibility methods. The proposed approach can be applied to solving group classification problems for a number of important classes of differential equations arising in mathematical physics.Comment: 10 page

    The direct evaluation of attosecond chirp from a streaking measurement

    Full text link
    We derive an analytical expression, from classical electron trajectories in a laser field, that relates the breadth of a streaked photoelectron spectrum to the group-delay dispersion of an isolated attosecond pulse. Based on this analytical expression, we introduce a simple, efficient and robust procedure to instantly extract the attosecond pulse's chirp from the streaking measurement.Comment: 4 figure

    A Critical Evaluation of Tracking Public Opinion with Social Media: A Case Study in Presidential Approval

    Get PDF
    There has been much interest in using social media to track public opinion. We introduce a higher level of scrutiny to these types of analyses, specifically looking at the relationship between presidential approval and "Trump" tweets and developing a framework to interpret its strength. We use placebo analyses, performing the same analysis but with tweets assumed to be unrelated to presidential approval, to assess the relationship and conclude that the relationship is less strong than it might otherwise seem. Secondly, we suggest following users longitudinally, which enables us to find evidence of a political signal around the 2016 presidential election. For the goal of supplementing traditional surveys with social media data, our results are encouraging, but cautionary

    Exact Soliton-like Solutions of the Radial Gross-Pitaevskii Equation

    Full text link
    We construct exact ring soliton-like solutions of the cylindrically symmetric (i.e., radial) Gross- Pitaevskii equation with a potential, using the similarity transformation method. Depending on the choice of the allowed free functions, the solutions can take the form of stationary dark or bright rings whose time dependence is in the phase dynamics only, or oscillating and bouncing solutions, related to the second Painlev\'e transcendent. In each case the potential can be chosen to be time-independent.Comment: 8 pages, 7 figures. Version 2: stability analysis of the dark solutio

    Proposal of a CLT reinforcement of old timber floors

    Get PDF
    Despite the fact that, from the mechanical point of view, there is no ageing issues of timber elements when they are properly used, many old timber structures require important interventions because of changes in uses (which modifies the regulating rules for example), of material decay (misuse of timber) or possibly of a faulty design or construction. In particular, timber floors in old structures often present large deflections and most the time had been designed for a maximum load much lower than the one prescribed by contemporary rules. After an introduction about timber floors and a short review about the reinforcement technics that exist, the present paper presents a new proposal for their reinforcement. The solution developed in the present paper uses a Cross Laminated Timber (CLT) panel screwed over the existing floor, keeping a small gap between the panel and the existing joists. In this way, the new “composite” floor presents higher stiffness and the gap is used for horizontal line runs. For the design of such a “composite floor”, modified Johanssen’s equations (including the gap between the CLT panel and the joists) are proposed and their application on a case study is presented.- (undefined

    Symmetries of differential-difference dynamical systems in a two-dimensional lattice

    Full text link
    Classification of differential-difference equation of the form u¨nm=Fnm(t,{upq}(p,q)Γ)\ddot{u}_{nm}=F_{nm}\big(t, \{u_{pq}\}|_{(p,q)\in \Gamma}\big) are considered according to their Lie point symmetry groups. The set Γ\Gamma represents the point (n,m)(n,m) and its six nearest neighbors in a two-dimensional triangular lattice. It is shown that the symmetry group can be at most 12-dimensional for abelian symmetry algebras and 13-dimensional for nonsolvable symmetry algebras.Comment: 24 pages, 1 figur
    corecore