8,621 research outputs found

    Response to comments on "Differential Sensitivity to Human Communication in Dogs, Wolves, and Human Infants."

    Get PDF
    The comments by Fiset and Marshall-Pescini et al. raise important methodological issues and propose alternative accounts for our finding of perseverative search errors in dogs. Not denying that attentional processes and local enhancement are involved in such object search tasks, we provide here new evidence and argue that dogs’ behavior is affected by a combination of factors, including specific susceptibility to human communicative signals

    The direct evaluation of attosecond chirp from a streaking measurement

    Full text link
    We derive an analytical expression, from classical electron trajectories in a laser field, that relates the breadth of a streaked photoelectron spectrum to the group-delay dispersion of an isolated attosecond pulse. Based on this analytical expression, we introduce a simple, efficient and robust procedure to instantly extract the attosecond pulse's chirp from the streaking measurement.Comment: 4 figure

    X,Y,Z-Waves: Extended Structures in Nonlinear Lattices

    Get PDF
    Motivated by recent experimental and theoretical results on optical X-waves, we propose a new type of waveforms in 2D and 3D discrete media -- multi-legged extended nonlinear structures (ENS), built as arrays of lattice solitons (tiles or stones, in the 2D and 3D cases, respectively). First, we study the stability of the tiles and stones analytically, and then extend them numerically to complete ENS forms for both 2D and 3D lattices. The predicted patterns are relevant to a variety of physical settings, such as Bose-Einstein condensates in deep optical lattices, lattices built of microresonators, photorefractive crystals with optically induced lattices (in the 2D case) and others.Comment: 4 pages, 4 figure

    Baryon Asymmetry of the Universe without Boltzmann or Kadanoff-Baym

    Full text link
    We present a formalism that allows the computation of the baryon asymmetry of the universe from first principles of statistical physics and quantum field theory that is applicable to certain types of beyond the Standard Model physics (such as the neutrino Minimal Standard Model -- Μ\nuMSM) and does not require the solution of Boltzmann or Kadanoff-Baym equations. The formalism works if a thermal bath of Standard Model particles is very weakly coupled to a new sector (sterile neutrinos in the Μ\nuMSM case) that is out-of-equilibrium. The key point that allows a computation without kinetic equations is that the number of sterile neutrinos produced during the relevant cosmological period remains small. In such a case, it is possible to expand the formal solution of the von Neumann equation perturbatively and obtain a master formula for the lepton asymmetry expressed in terms of non-equilibrium Wightman functions. The master formula neatly separates CP-violating contributions from finite temperature correlation functions and satisfies all three Sakharov conditions. These correlation functions can then be evaluated perturbatively; the validity of the perturbative expansion depends on the parameters of the model considered. Here we choose a toy model (containing only two active and two sterile neutrinos) to illustrate the use of the formalism, but it could be applied to other models.Comment: 26 pages, 10 figure

    Universal Heat Conduction in YBa_2Cu_3O_6.9

    Full text link
    The thermal conductivity of YBa_2Cu_3O_6.9 was measured at low temperatures in untwinned single crystals with concentrations of Zn impurities from 0 to 3% of Cu. A linear term kappa_0/T = 0.19 mW/K^2.cm is clearly resolved as T -> 0, and found to be virtually independent of Zn concentration. The existence of this residual normal fluid strongly validates the basic theory of transport in unconventional superconductors. Moreover, the observed universal behavior is in quantitative agreement with calculations for a gap function of d-wave symmetry.Comment: Latex file, 4 pages, 3 EPS figures, to appear in Physical Review Letter

    Experimental phase diagram of moving vortices

    Full text link
    In the mixed state of type II superconductors, vortices penetrate the sample and form a correlated system due to the screening of supercurrents around them. Interestingly, we can study this correlated system as a function of density and driving force. The density, for instance, is controlled by the magnetic field, B, whereas a current density j acts as a driving force F=jxB on all vortices. The free motion of vortices is inhibited by the presence of an underlying potential, which tends to pin the vortices. Hence, to minimize the pinning strength we studied a superconducting glass in which the depinning current is 10 to 1000 times smaller than in previous studies, which enables us to map out the complete phase diagram in this new regime. The diagram is obtained as a function of B, driving current and temperature and led a remarkable set of new results, which includes a huge peak effect, an additional reentrant depinning phase and a driving force induced pinning phase.Comment: 4 page

    Exact Soliton-like Solutions of the Radial Gross-Pitaevskii Equation

    Full text link
    We construct exact ring soliton-like solutions of the cylindrically symmetric (i.e., radial) Gross- Pitaevskii equation with a potential, using the similarity transformation method. Depending on the choice of the allowed free functions, the solutions can take the form of stationary dark or bright rings whose time dependence is in the phase dynamics only, or oscillating and bouncing solutions, related to the second Painlev\'e transcendent. In each case the potential can be chosen to be time-independent.Comment: 8 pages, 7 figures. Version 2: stability analysis of the dark solutio

    Angular position of nodes in the superconducting gap of YBCO

    Full text link
    The thermal conductivity of a YBCO single crystal has been studied as a function of the relative orientation of the crystal axes and a magnetic field rotating in the Cu-O planes. Measurements were carried out at several temperatures below T_c and at a fixed field of 30 kOe. A four-fold symmetry characteristic of a superconducting gap with nodes at odd multiples of 45 degrees in k-space was resolved. Experiments were performed to exclude a possible macroscopic origin for such a four-fold symmetry such as sample shape or anisotropic pinning. Our results impose an upper limit of 10% on the weight of the s-wave component of the essentially d-wave superconducting order parameter of YBCO.Comment: 10 pages, 4 figure
    • 

    corecore