7,872 research outputs found

    Baryon Asymmetry of the Universe without Boltzmann or Kadanoff-Baym

    Full text link
    We present a formalism that allows the computation of the baryon asymmetry of the universe from first principles of statistical physics and quantum field theory that is applicable to certain types of beyond the Standard Model physics (such as the neutrino Minimal Standard Model -- ν\nuMSM) and does not require the solution of Boltzmann or Kadanoff-Baym equations. The formalism works if a thermal bath of Standard Model particles is very weakly coupled to a new sector (sterile neutrinos in the ν\nuMSM case) that is out-of-equilibrium. The key point that allows a computation without kinetic equations is that the number of sterile neutrinos produced during the relevant cosmological period remains small. In such a case, it is possible to expand the formal solution of the von Neumann equation perturbatively and obtain a master formula for the lepton asymmetry expressed in terms of non-equilibrium Wightman functions. The master formula neatly separates CP-violating contributions from finite temperature correlation functions and satisfies all three Sakharov conditions. These correlation functions can then be evaluated perturbatively; the validity of the perturbative expansion depends on the parameters of the model considered. Here we choose a toy model (containing only two active and two sterile neutrinos) to illustrate the use of the formalism, but it could be applied to other models.Comment: 26 pages, 10 figure

    Precise overgrowth composition during biomineral culture and inorganic precipitation

    Get PDF
    We introduce a method to analyze element ratios and isotope ratios in mineral overgrowths. This general technique can quantify environmental controls on proxy behavior for a range of cultured biominerals and can also measure compositional effects during seeded mineral growth. Using a media enriched in multiple stable isotopes, the method requires neither the mass nor the composition of the initial seed or skeleton to be known and involves only bulk isotope measurements. By harnessing the stability and sensitivity of bulk analysis the new approach promises high precision measurements for a range of elements and isotopes. This list includes trace species and select non-traditional stable isotopes, systems where sensitivity and external reproducibility currently limit alternative approaches like secondary ion mass spectrometry (SIMS) and laser ablation mass spectrometry. Since the method separates isotopically labeled growth from unlabeled material, well-choreographed spikes can resolve the compositional effects of different events through time. Among other applications, this feature could be used to separate the impact of day and night on biomineral composition in organisms with photosymbionts

    Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions

    Get PDF
    In the absence of inertia, a reciprocal swimmer achieves no net motion in a viscous Newtonian fluid. Here, we investigate the ability of a reciprocally actuated particle to translate through a complex fluid that possesses a network using tracking methods and birefringence imaging. A geometrically polar particle, a rod with a bead on one end, is reciprocally rotated using magnetic fields. The particle is immersed in a wormlike micellar (WLM) solution that is known to be susceptible to the formation of shear bands and other localized structures due to shear-induced remodeling of its microstructure. Results show that the nonlinearities present in this WLM solution break time-reversal symmetry under certain conditions, and enable propulsion of an artificial "swimmer." We find three regimes dependent on the Deborah number (De): net motion towards the bead-end of the particle at low De, net motion towards the rod-end of the particle at intermediate De, and no appreciable propulsion at high De. At low De, where the particle time-scale is longer then the fluid relaxation time, we believe that propulsion is caused by an imbalance in the fluid first normal stress differences between the two ends of the particle (bead and rod). At De~1, however, we observe the emergence of a region of network anisotropy near the rod using birefringence imaging. This anisotropy suggests alignment of the micellar network, which is "locked in" due to the shorter time-scale of the particle relative to the fluid

    Evaluating elbow osteoarthritis within the prehistoric Tiwanaku state using generalized estimating equations (GEE).

    Get PDF
    OBJECTIVES:Studies of osteoarthritis (OA) in human skeletal remains can come with scalar problems. If OA measurement is noted as present or absent in one joint, like the elbow, results may not identify specific articular pathology data and the sample size may be insufficient to address research questions. If calculated on a per data point basis (i.e., each articular surface within a joint), results may prove too data heavy to comprehensively understand arthritic changes, or one individual with multiple positive scores may skew results and violate the data independence required for statistical tests. The objective of this article is to show that the statistical methodology Generalized Estimating Equations (GEE) can solve scalar issues in bioarchaeological studies. MATERIALS AND METHODS:Using GEE, a population-averaged statistical model, 1,195 adults from the core and one colony of the prehistoric Tiwanaku state (AD 500-1,100) were evaluated bilaterally for OA on the seven articular surfaces of the elbow joint. RESULTS:GEE linked the articular surfaces within each individual specimen, permitting the largest possible unbiased dataset, and showed significant differences between core and colony Tiwanaku peoples in the overall elbow joint, while also pinpointing specific articular surfaces with OA. Data groupings by sex and age at death also demonstrated significant variation. A pattern of elbow rotation noted for core Tiwanaku people may indicate a specific pattern of movement. DISCUSSION:GEE is effective and should be encouraged in bioarchaeological studies as a way to address scalar issues and to retain all pathology information

    Angular position of nodes in the superconducting gap of YBCO

    Full text link
    The thermal conductivity of a YBCO single crystal has been studied as a function of the relative orientation of the crystal axes and a magnetic field rotating in the Cu-O planes. Measurements were carried out at several temperatures below T_c and at a fixed field of 30 kOe. A four-fold symmetry characteristic of a superconducting gap with nodes at odd multiples of 45 degrees in k-space was resolved. Experiments were performed to exclude a possible macroscopic origin for such a four-fold symmetry such as sample shape or anisotropic pinning. Our results impose an upper limit of 10% on the weight of the s-wave component of the essentially d-wave superconducting order parameter of YBCO.Comment: 10 pages, 4 figure

    Limits on Lorentz Violation from the Highest Energy Cosmic Rays

    Full text link
    We place several new limits on Lorentz violating effects, which can modify particles' dispersion relations, by considering the highest energy cosmic rays observed. Since these are hadrons, this involves considering the partonic content of such cosmic rays. We get a number of bounds on differences in maximum propagation speeds, which are typically bounded at the 10^{-21} level, and on momentum dependent dispersion corrections of the form v = 1 +- p^2/Lambda^2, which typically bound Lambda > 10^{21} GeV, well above the Planck scale. For (CPT violating) dispersion correction of the form v = 1 + p/Lambda, the bounds are up to 15 orders of magnitude beyond the Planck scale.Comment: 24 pages, no figures. Added references, very slight changes. Version published in Physical Review

    PMH11 RATIONAL CHOICE OF TREATMENT STRATEGY IN MODERATE TO SEVERE ALZHEIMER'S DISEASE PATIENTS LIVING IN CANADA

    Get PDF

    Role of food web interactions in promoting resilience to nutrient enrichment in a brackish water eelgrass (Zostera marina) ecosystem

    Get PDF
    Understanding the ecological interactions that enhance the resilience of threatened ecosystems is essential in assuring their conservation and restoration. Top-down trophic interactions can increase resilience to bottom-up nutrient enrichment, however, as many seagrass ecosystems are threatened by both eutrophication and trophic modifications, understanding how these processes interact is important. Using a combination of approaches, we explored how bottom-up and top-down processes, acting individually or in conjunction, can affect eelgrass meadows and associated communities in the northern Baltic Sea. Field surveys along with fish diet and stable isotope analyses revealed that the eelgrass trophic network included two main top predatory fish species, each of which feeds on a separate group of invertebrate mesograzers (crustaceans or gastropods). Mesograzer abundance in the study area was high, and capable of mitigating the effects of increased algal biomass that resulted from experimental nutrient enrichment in the field. When crustacean mesograzers were experimentally excluded, gastropod mesograzers were able to compensate and limit the effects of nutrient enrichment on eelgrass biomass and growth. Our results suggest that top-down processes (i.e., suppression of algae by different mesograzer groups) may ensure eelgrass resilience to nutrient enrichment in the northern Baltic Sea, and the existence of multiple trophic pathways can provide additional resilience in the face of trophic modifications. However, the future resilience of these meadows is likely threatened by additional local stressors and global environmental change. Understanding the trophic links and interactions that ensure resilience is essential for managing and conserving these important ecosystems and the services they provide

    Triplanar Model for the Gap and Penetration Depth in YBCO

    Full text link
    YBaCuO_7 is a trilayer material with a unit cell consisting of a CuO_2 bilayer with a CuO plane of chains in between. Starting with a model of isolated planes coupled through a transverse matrix element, we consider the possibility of intra as well as interplane pairing within a nearly antiferromagnetic Fermi liquid model. Solutions of a set of three coupled BCS equations for the gap exhibit orthorhombic symmetry with s- as well as d-wave contributions. The temperature dependence and a-b in plane anisotropy of the resulting penetration depth is discussed and compared with experiment.Comment: To appear in Physical Review B1 01Mar97; 12 pages with 10 figures; RevTeX+eps
    corecore