10,655 research outputs found

    Thrifty swimming with shear-thinning

    Get PDF
    Microscale propulsion is integral to numerous biomedical systems, for example biofilm formation and human reproduction, where the surrounding fluids comprise suspensions of polymers. These polymers endow the fluid with non-Newtonian rheological properties, such as shear-thinning and viscoelasticity. Thus, the complex dynamics of non-Newtonian fluids presents numerous modelling challenges, strongly motivating experimental study. Here, we demonstrate that failing to account for "out-of-plane" effects when analysing experimental data of undulatory swimming through a shear-thinning fluid results in a significant overestimate of fluid viscosity around the model swimmer C. elegans. This miscalculation of viscosity corresponds with an overestimate of the power the swimmer expends, a key biophysical quantity important for understanding the internal mechanics of the swimmer. As experimental flow tracking techniques improve, accurate experimental estimates of power consumption using this technique will arise in similar undulatory systems, such as the planar beating of human sperm through cervical mucus, will be required to probe the interaction between internal power generation, fluid rheology, and the resulting waveform

    Undulatory swimming in fluids with polymer networks

    Full text link
    The motility behavior of the nematode Caenorhabditis elegans in polymeric solutions of varying concentrations is systematically investigated in experiments using tracking and velocimetry methods. As the polymer concentration is increased, the solution undergoes a transition from the semi-dilute to the concentrated regime, where these rod-like polymers entangle, align, and form networks. Remarkably, we find an enhancement in the nematode's swimming speed of approximately 65% in concentrated solutions compared to semi-dilute solutions. Using velocimetry methods, we show that the undulatory swimming motion of the nematode induces an anisotropic mechanical response in the fluid. This anisotropy, which arises from the fluid micro-structure, is responsible for the observed increase in swimming speed.Comment: Published 1 November 2013 in Europhysics Letter

    Response to comments on "Differential Sensitivity to Human Communication in Dogs, Wolves, and Human Infants."

    Get PDF
    The comments by Fiset and Marshall-Pescini et al. raise important methodological issues and propose alternative accounts for our finding of perseverative search errors in dogs. Not denying that attentional processes and local enhancement are involved in such object search tasks, we provide here new evidence and argue that dogs’ behavior is affected by a combination of factors, including specific susceptibility to human communicative signals

    Undulatory swimming in shear-thinning fluids: Experiments with C. elegans

    Get PDF
    The swimming behaviour of microorganisms can be strongly influenced by the rheology of their fluid environment. In this manuscript, we experimentally investigate the effects of shear-thinning viscosity on the swimming behaviour of an undulatory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer's kinematic data (including propulsion speed) and velocity fields. We find that shear-thinning viscosity modifies the velocity fields produced by the swimming nematode but does not modify the nematode's speed and beating kinematics. Velocimetry data show significant enhancement in local vorticity and circulation and an increase in fluid velocity near the nematode's tail compared to Newtonian fluids of similar effective viscosity. These findings are compared to recent theoretical and numerical results

    A Rare Case of Hemophagocytic Lymphohistiocytosis of Unknown Etiology

    Get PDF
    Hemophagocytic lymphohistiocytosis (HLH) is an uncommon cytokine storm syndrome marked which can cause high mortality. In adults, acquired HLH usually has an underlying infectious, autoimmune or malignant process that triggers the syndrome. In this case report, we present a 64-year old Caucasian male presenting with productive cough, fevers, weight loss and altered mental status who was ultimately found to have HLH of unknown etiology

    Group classification of (1+1)-Dimensional Schr\"odinger Equations with Potentials and Power Nonlinearities

    Full text link
    We perform the complete group classification in the class of nonlinear Schr\"odinger equations of the form iψt+ψxx+ψγψ+V(t,x)ψ=0i\psi_t+\psi_{xx}+|\psi|^\gamma\psi+V(t,x)\psi=0 where VV is an arbitrary complex-valued potential depending on tt and x,x, γ\gamma is a real non-zero constant. We construct all the possible inequivalent potentials for which these equations have non-trivial Lie symmetries using a combination of algebraic and compatibility methods. The proposed approach can be applied to solving group classification problems for a number of important classes of differential equations arising in mathematical physics.Comment: 10 page

    Locomotion At Low Reynolds Number: Dynamics In Newtonian And Non-Newtonian Systems With Biomedical Applications

    Get PDF
    Swimming microorganisms such as bacteria, spermatozoa, algae, and nematodes are critical to ubiquitous biological phenomena such as disease and infection, ecosystem dynamics, and mammalian fertilization. While there has been much scientific and practical interest in studying these swimmers in Newtonian (water-like) fluids, there are fewer systematic experimental studies on swimming through non-Newtonian (non-water-like) fluids with biologically-relevant mechanical properties. These organisms commonly swim through viscoelastic, structured, or shear-rate-dependent fluids, such as blood, mucus, and living tissues. Furthermore, the small length scales of these organisms dictate that their motion is dominated by viscous forces and inertia is negligible. Using rheology, microscopy, particle tracking, and image processing techniques, we examine the interaction of low Reynolds number swimmers and non-Newtonian fluids including viscoelastic, locally-anisotropic, and shear-thinning fluids. We then apply our understanding of locomotion to the study of the genetic disease Spinal Muscular Atrophy

    Algeria, De Gaulle, and the Birth of the French Fifth Republic

    Get PDF
    This paper explores the role of the French Army and the role of General Charles de Gaulle in the Crisis of May 1958, and how the Crisis marked the end of the French Fourth Republic. The role of civilians in starting the uprising in Algeria is highlighted, and it is emphasized that the French Army joined the revolt once it was in progress. Although General de Gaulle had been out of public life for a decade, it was he who came to power because of the Crisis and it was he who went on to create the new French Fifth Republic. This paper was selected as the winner of the first annual Providence College Undergraduate Research Prize in 201
    corecore