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ABSTRACT

LOCOMOTION AT LOW REYNOLDS NUMBER: DYNAMICS IN NEWTONIAN AND

NON-NEWTONIAN SYSTEMS WITH BIOMEDICAL APPLICATIONS

David A. Gagnon

Paulo E. Arratia

Swimming microorganisms such as bacteria, spermatozoa, algae, and nematodes are crit-

ical to ubiquitous biological phenomena such as disease and infection, ecosystem dynam-

ics, and mammalian fertilization. While there has been much scientific and practical in-

terest in studying these swimmers in Newtonian fluids, there are fewer systematic exper-

imental studies on swimming through non-Newtonian fluids with biologically-relevant

mechanical properties. These organisms commonly swim through viscoelastic, structured,

or shear-rate-dependent fluids, such as blood, mucus, and living tissues. Furthermore, the

small length scales of these organisms dictate that their motion is dominated by viscous

forces and inertia is negligible. Using rheology, microscopy, particle tracking, and image

processing techniques, we examine the interaction of low Reynolds number swimmers

and non-Newtonian fluids including viscoelastic, locally-anisotropic, and shear-thinning

fluids. We then apply our understanding of locomotion to the study of the genetic disease

Spinal Muscular Atrophy.
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CHAPTER 1 : Introduction

Swimming microorganisms are integral to many natural processes, including the forma-

tion of infectious biofilms in the stomach (Celli et al., 2009), the movement of sperm cells

in cervical fluid (Katz and Berger, 1980; Fauci and Dillon, 2006), suspension feeding in

oceans and lakes (Leptos et al., 2009), and the stabilization of soil ecosystems by nema-

todes (Alexander, 1991). Typical length scales for these organisms range from the micron

(e.g. Escherichia coli) to the millimeter scale (e.g. Caenorhabditis elegans). The physics that

governs swimming at these small length scales is fundamentally different from our typi-

cal interaction between a (human) swimmer and a fluid (Elfring et al., 2015). As a result,

we begin by discussing the fundamental swimming problem: how does a organism move

through a fluid when it is very small?

1.1. The swimming problem

At its most fundamental level, a microorganism swims by deforming its body, and by

extension, deforming the solid-liquid interface at its surface (Elfring et al., 2015). Their

typical locomotion strategies fall into one of three categories of swimming gait: (i) “push-

ers,” which use rotating flagella (E. coli, Patteson et al. (2015)) or an undulatory filament

(C. elegans, Korta et al. (2007); Sznitman et al. (2010b) and spermatozoa, Gray and Han-

cock (1955); Montenegro-Johnson et al. (2012)) to produce time-periodic body shapes like

a corkscrew or traveling wave, respectively; (ii) “pullers,” which swim by waving cilia in

a time-periodic breast stroke pattern (Chlamydomonas reinhardtii, Qin et al. (2015); Leptos

et al. (2009)); and (iii) “squirmers”, which moves by generating metachronal waves via

beating cilia covering their cell bodies (Volvox, Pedley et al. (2016)). These deformations,

regardless of swimming gait, result in surface stresses and fluid motion and are a combi-

nation of rotation and translation.

We begin by considering the equation of motion for an arbitrary fluid element in the pres-

1



ence of a swimmer. For any given volume element, the rate of momentum accumulation

must be equal to the net momentum flux across the surfaces plus the sum of pressure and

volumetric forces (such as gravity) acting on the system. The momentum equation is:

ρ

(
∂u
∂t

+ u ·∇u
)
= −∇p +∇ · τ + ρg, (1.1)

where each term from left to right represents fluid acceleration (rate of momentum increase

plus convective acceleration), pressure forces, viscous forces, and body (volumetric) forces;

here, ρ is the fluid density, u is the fluid velocity, p is pressure, τ is the shear stress tensor,

and g is gravitation acceleration. For the purposes of this discussion, we can also assume

that the fluid is Newtonian and has constant viscosity µ. We can then write the constitutive

equation only valid for incompressible and Newtonian fluids:

τ = µγ̇, (1.2)

where the shear rate tensor γ̇ ≡ 1
2

(
∇u +∇uT

)
. Furthermore, we can simplify the fluid

acceleration terms via the material derivative Du
Dt = ∂u

∂t + u · (∇u). We can then write the

more general momentum equation as the Navier-Stokes equation:

ρ
Du
Dt

= −∇p + µ∇2u + ρg (1.3)

2



Equation (1.3) can be non-dimensionalized using the following scalings:

u∗ =
u
U

(1.4a)

p∗ =
P

µU2 (1.4b)

t∗ =
tU
L

(1.4c)

r∗ =
r
L

(1.4d)

∇∗ = L∇ (1.4e)

D
Dt∗

=

(
L
U

)
D
Dt

, (1.4f)

where L, U, P, r and t are characteristic length, speed, pressure, position, and time, re-

spectively. Substituting into Eq. (1.3) leads to the following non-dimensional equation of

motion for an incompressible, Newtonian fluid:

Du∗

Dt∗
= −∇∗p∗ +

[
µ

LUρ

]
∇∗2u∗ +

[
gL
U2

]
g
g

. (1.5)

The two non-dimensional groups in brackets are the Reynolds number Re = ρUL
µ and the

Froude number Fr = U2

gL , where U is the swimming speed, L is a characteristic length scale,

and ρ and η are the fluid’s density and viscosity, respectively. Rewriting the equation with

these numbers:
Du∗

Dt∗
= −∇∗p∗ +

[
1

Re

]
∇∗2u∗ +

[
1
Fr

]
g
g

, (1.6)

we can immediately see the impact of the small size of microorganisms L; these small

length scales naturally lead to small Reynolds numbers and large Froude numbers. This

means that body and inertial forces are negligible and viscous forces dominate the equation

of motion. Intuitively, this makes sense, since volumetric forces scale as L3 while surface

or traction forces scale as L2; additionally, the low Reynolds number regime for swimmers

dictates that organisms use viscous drag forces to propel themselves through a fluid.
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Simplifying Eq. 1.6 based on these assumptions, we obtain Stokes’ equation for motion at

low Reynolds number:

∇p = µ∇2u. (1.7)

We also invoke conservation of mass and define continuity for an incompressible, constant

density fluid:

∇ · u = 0. (1.8)

In the low Reynolds number regime governed by these two equations, viscous forces dom-

inate inertial forces, and fluid transport is independent of time or kinematically reversible.

Consequently, an organism’s body geometry dictates the motion of a low-Re swimmer;

such an organism must employ a kinematically-irreversible swimming stroke for net trans-

lation to occur (Purcell, 1977).

If our fluid is not of constant viscosity, we can write a more general equation of motion

which does not presuppose the constitutive equation of the fluid. Defining the total stress

tensor σ = −pI + τ, we can write Stokes’ equation as:

∇p = ∇ · τ (1.9)

or equivalently

∇ · σ = 0. (1.10)

Since a microorganism is freely swimming with no external forces or torques acting upon

its body, it is instantaneously force- and torque-free. This indicates that for any given

swimmer geometry or body shape S(t), the force F and torque L on the swimmer’s body

are expressed as:

F =
∫

S
n · σdS = 0 (1.11)

L =
∫

S
r× (n · σ)dS = 0, (1.12)
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where r is the position vector from the swimmer’s centroid to the surface S(t). Note

that these forces and torques are only dependent on body shape of the swimmer and

fluid stresses from the aforementioned fundamental equations (1.8) and (1.10) and sum

to zero (Elfring et al., 2015).

We can then extend these equations to estimate the mechanical power or cost of swimming

for a low Reynolds number swimmer, which will be discussed in more detail in Section 3.5;

this framework is also the foundation for simple analytical models of self-propulsion (Tay-

lor, 1951; Gray and Hancock, 1955; Lighthill, 1976).

While many studies have sought an understanding of self-propulsion at low Re in New-

tonian fluids (Taylor, 1951; Lighthill, 1976; Korta et al., 2007; Lauga and Powers, 2009;

Guasto et al., 2010; Padmanabhan et al., 2012; Bilbao et al., 2013), there are crucial biologi-

cal systems in which microorganisms must swim in complex fluids that contain polymers,

particles, and large proteins (Spagnolie, 2015). Examples include sperm cells in cervical

mucus (Katz and Berger, 1980; Fauci and Dillon, 2006) and Lyme disease spirochetes in tis-

sues (Harman et al., 2012). These complex fluids typically display non-Newtonian rheolog-

ical behavior such as shear-thinning viscosity and viscoelasticity (Larson, 1999). Further-

more, many biologically-relevant systems present geometries that combine a swimmer’s

interaction with complex fluids with confinement, which can further modify the stresses

on (and behavior of) the organism.

Recent studies of the behavior of single swimmers in non-Newtonian fluids have cen-

tered on the effects of fluid elasticity and local structure on propulsion speed and kinemat-

ics (Lauga, 2007; Fu et al., 2009; Leshansky, 2009; Fu et al., 2010; Teran et al., 2010; Juarez

et al., 2010; Shen and Arratia, 2011; Liu et al., 2011; Harman et al., 2012; Gagnon et al., 2013,

2014b; Thomases and Guy, 2014a; Patteson et al., 2015; Qin et al., 2015). These studies have

shown that fluid elasticity modifies the swimming speed and kinematics of microorgan-

isms. Whether swimming speed is increased or decreased seems highly dependent on the
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swimming gait of the organism and its coupling with the material properties of the fluid.

With this perspective, there are three broad aims within the scope of this work:

1.2. Perform systematic studies of swimming in fluids with non-Newtonian vis-

cosity behavior

To date, major studies of the effects of shear-thinning viscosity have been theoretical (Vélez-

Cordero and Lauga, 2013) and numerical (Montenegro-Johnson et al., 2012, 2013). The the-

oretical analysis focused on a two-dimensional, infinite waving sheet immersed in a model

Carreau (shear-thinning) fluid, and found a non-Newtonian contribution to propulsion

speed to fourth order in amplitude when the sheet was extensible, but no non-Newtonian

contribution to propulsion speed when an inextensible condition was applied (Vélez-Cordero

and Lauga, 2013). Additionally, for a finite swimmer, this analysis suggested the flow field

was modified, with increased vorticity near the sheet (Vélez-Cordero and Lauga, 2013).

Separate simulations (Montenegro-Johnson et al., 2012, 2013) also using the Carreau model

suggested that undulatory swimmers with a head or “payload” (similar to a sperm cell) are

assisted by shear-thinning viscosity, resulting in increased speed and that the swimmer’s

motion results in an envelope of thinned fluid around the body.

Despite these recent and important efforts, there is still a dearth of experimental investi-

gations of swimming in shear-thinning fluids, and the effects of rate-dependent viscosity

on swimming remain unclear. Experiments with a mechanical model system (Dasgupta

et al., 2013) finds a decrease in propulsion for fluids possessing both shear-thinning and

viscoelastic behavior, while the swimming speed of C. elegans is shown to be unaffected

by shear-thinning viscosity (Shen and Arratia, 2011) although only a single data point is

available. One particularly important outstanding question is whether a microorganism

finds swimming in shear-thinning fluids mechanically easier (or more difficult) than in

Newtonian fluids. One can think of this ease or difficulty in swimming as an organism’s

cost of swimming, or mechanical power. Recent work, both theoretical (Vélez-Cordero
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and Lauga, 2013) and numerical (Li and Ardekani, 2015), has also proposed a reduction in

the cost of swimming for undulatory organisms in shear-thinning fluids. Indeed, it seems

quite reasonable that a fluid possessing decreasing viscosity with increasing shear rate

might reduce the cost of swimming, although there has been little experimental evidence

for such behavior.

1.3. Examine swimming under anisotropic conditions, including confinement in

non-Newtonian fluids

Of additional interest is the ability of microoganisms to swim under confinement. By in-

troducing a far-field no-slip boundary condition, one can mimic natural biological pro-

cesses such as bacteria moving through vesicles in the circulatory system and sperm cells

swimming through millimeter-scale fallopian tubes (Colburn, 1986); both of these systems

contain non-Newtonian fluids (blood and mucus, respectively). Building off our above

argument that non-Newtonian fluids are the most appropriate model system for studying

biological locomotion, we believe a necessary component of studying low Reynolds num-

ber swimmers is a systematic experimental investigation of swimming under confinement

in non-Newtonian fluids.

An analytical study (Katz, 2003) and a numerical computation (Münch et al., 2016) using an

infinite waving sheet in the presence of solid boundaries have proposed that an undulatory

swimmer should swim faster under confinement in a Newtonian fluid. Several studies

have shown that hydrodynamic wall interactions can also lead to aggregation in Newto-

nian fluids (Li and Ardekani, 2014), and modified aggregation in viscoelastic fluids (Yazdi

et al., 2014, 2015). Additionally, work with C. elegans has shown that the presence of solid

boundaries can lead a modulated swimming gait, particularly a decrease in amplitude in

Newtonian fluids (Schulman et al., 2014). However, there is a lack of experimental data

on the combined effects of viscoelasticity and confinement on swimming behavior. We

therefore combine effects of confinement and fluids with viscoelastic and shear-thinning
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rheology and examine their fundamental effects on the kinematics of an undulatory swim-

mer. For C. elegans swimming through a thin channel, as the walls of the channel approach

the characteristic transverse length-scale of the nematode’s swimming gate, defined as the

head amplitude, we expect modifications of the flow field around the swimmer, which in

turn will modify fluid stresses and simultaneously the nematode’s swimming behavior.

1.4. Apply swimming assays to the study of genetic disease

Previously, a similar assay has described a number of genotypes of C. elegans, including

one with the genetic disease muscular dystrophy (Krajacic et al., 2012; Sznitman et al.,

2010a). In this study, we use a swimming assay incorporating both kinematics (e.g. swim-

ming speed) and dynamics (e.g. bending force) to examine the swimming behavior of four

groups of C. elegans: control groups N2 (wildtype) and the long-lived mutant daf-2(e1370),

a diseased group smn-1(ok355), and a rescue group smn-1(ok355);daf-2(e1370). By observing

this periodic motion during forward swimming, we are able to detect statistically signifi-

cant differences between the diseased and rescue groups for two important factors: bend-

ing force and mechanical power. Bending force indicates the forces required to bend the

nematode’s body into the observed configurations and mechanical power represents the

rate of energy expenditure for the nematode’s forward progress.

1.4.1. Methods

1.5. C. elegans: a model biological organism

Swimming experiments in Newtonian and non-Newtonian fluids are performed using the

nematode C. elegans. These nematodes are characterized by a relatively long and quasi-

cylindrical body shape and are approximately 1 mm in length and 80 µm in diameter; their

genome has been completely sequenced (Brenner, 1974) and a complete cell lineage has

been established (Byerly et al., 1976). C. elegans are equipped with 95 muscle cells that are

highly similar in both anatomy and molecular makeup to vertebrate skeletal muscle (White
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Figure 1: (a) Schematic of nematode C. elegans swimming in a sealed fluidic chamber. (b)
C. elegans swimming through fluid seeded with tracer particles. Yellow line show instan-
taneous body shape, black arrow defines an outward normal vector and blue arrow shows
the direction of motion. (c) Nematode’s body curvature during swimming. Curvature plot
for approximately four beating cycles illustrates characteristic traveling wave propagating
from head to tail. Wave speed c is highlighted by the yellow dashed arrow.

et al., 1986). Their neuromuscular system controls their body undulations, allowing C.

elegans to swim, dig, and crawl through diverse environments. The wealth of biological

knowledge accumulated to date makes C. elegans an ideal candidate for investigations that

combine aspects of biology, biomechanics, and the fluid mechanics of propulsion.

We place nematodes into sealed fluidic chambers (Fig. 1(a)) that are 2 cm in diameter and

1 mm in depth, and image their swimming motion using standard bright-field microscopy

(Infinity K2/SC microscope with an in-system amplifier, a CF-3 objective, and an IO In-

dustries Flare M180 camera at 150 frames per second). The depth of focus of the objective

is approximately 20 µm and the focal plane is set on the longitudinal axis of the nematode

body. The nematode beats primarily in the observation plane; the out-of-plane beating am-

plitude of C. elegans is less than 6% of the amplitude of its in-plane motion (Sznitman et al.,

2010b). All data presented here pertain to nematodes swimming at the center of the fluidic

chamber and out-of-plane recordings are discarded to avoid nematode-wall interactions

and to minimize three-dimensional flow effects.

1.6. Swimming kinematics

The nematode’s swimming kinematics are obtained from videos using in-house software (Sznit-

man et al., 2010c). The software extracts the nematode’s centroid position and body shape-
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line, and computes quantities such as swimming speed U and body curvature κ. Swim-

ming speed is obtained by differentiating the nematode’s centroid position with time, and

we define the positive y-axis as the swimming direction (see figure 1(b)). The body cur-

vature is defined as κ = δφ/δs, where φ is the angle between a fixed reference axis and

the tangent to the body shape-line, at each point s along the body contour, where s is an

arc length parameterization. Figure 1(c) shows the evolution of κ(s, t) for approximately

four beating cycles, revealing periodic lines that propagate in time from head (s = 0) to tail

(s = L), illustrating the characteristic traveling wave of undulatory swimming. The slope

and rate of occurrence of these lines represent wave speed c (figure 1(c), yellow dashed

line) and beating frequency f , respectively. In water-like buffer solutions, we find U ≈ 0.35

mm/s, f ≈ 2 Hz, and c ≈ 5 mm/s. The Reynolds number, defined as Re = ρUL/η,

is approximately 0.35, where L is the nematode’s length (1 mm), ρ is the fluid’s density

(103 kg/m3), and η is the fluid’s viscosity (1 mPa·s), indicating that viscous forces domi-

nate the flow. The range of Reynolds numbers for all experiments is 10−4 < Re ≤ 0.35.

1.7. Particle tracking

We measure the velocity fields generated by swimming C. elegans in both Newtonian and

non-Newtonian fluids by seeding the working fluids with 3.1 µm polystyrene tracer par-

ticles, which are tracked continuously for the entire duration of the experiment using in-

house codes. These tracer particles are dilute (< 0.5% by volume) and do not alter the

properties of the fluid. We image the nematodes swimming through this seeded fluid for 6

to 10 cycles, with each swimming cycle (or period) containing 60 phases. Because C. elegans

beat at a constant frequency, we can phase-average the data and obtain spatially resolved

velocity fields. We note that data points for each phase are averaged into gridded spaces

of approximately 20 µm.
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CHAPTER 2 : A fluid dynamics perspective of biological locomotion

The study of microorganism and cell swimming has numerous applications in both indus-

try and medicine, for instance in the context of mammalian reproduction (Johnson et al.,

1999; Fauci and Dillon, 2006), biofuel production (Bees and Croze, 2014), and the design

of artificial biomedical systems (Qiu and Nelson, 2015). Many of these swimmers, such

as mammalian spermatozoa, self-propel by generating traveling undulations along their

body (Lauga and Powers, 2009; Gaffney et al., 2011). One such undulatory swimmer is

the biological model organism Caenorhabditis elegans, a multi-cellular, free-living slender

nematode worm found in soil environments.

Recently, C. elegans has been used extensively as a model system for experimental studies

of propulsion, particularly at low Reynolds number, due to its simple planar swimming

gait and size (Gray and Lissmann, 1964; Korta et al., 2007; M.Backholm et al., 2014; Shen

and Arratia, 2011; Bilbao et al., 2013; Gagnon et al., 2014a; Park et al., 2016). The nematode

generates planar bending waves through contractions of its ventral and dorsal muscles,

producing a quasi-two-dimensional (2D) traveling sinewave along its body (Korta et al.,

2007; Sznitman et al., 2010b; Thomases and Guy, 2014b). At around 1 mm in length and

75 µm in diameter, C. elegans is significantly larger than the majority of low-Re undulatory

swimmers, enabling high-resolution reconstruction and analysis of planar flow fields from

particle tracking data. The resulting flow-fields can be used to probe properties of both

the swimmer and fluid, providing new insights into the physics of undulatory propul-

sion (Shen and Arratia, 2011; Gagnon et al., 2013; M.Backholm et al., 2014; Majumdar et al.,

2012; Bilbao et al., 2013; Gagnon et al., 2014a; Yuan et al., 2015; Park et al., 2016).

However, despite exhibiting a planar swimming stroke, the flow around C. elegans has a

complex three-dimensional structure, which is difficult to capture experimentally. Many

useful flow properties, such as the shear rate, are dependent upon out-of-plane flow con-
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tributions not measured by planar velocimetry data; in essence, one measures a 2D slice of

a three-dimensional (3D) field. This limits, for example, our ability to accurately determine

drag and propulsion forces experienced and exerted by the swimming nematode. In this

work, we show that numerical and theoretical fluid mechanics techniques can be used to

improve the processing and analysis of these experimental flow-fields.

We first obtain detailed (experimental) imaging data on the shape and kinematics of a

swimming C. elegans, together with particle-tracking data for flow-field reconstruction. We

then collaborated with Thomas Montenegro-Johnson and Eric Lauga to develop a numer-

ical boundary element model of the nematode, with geometry and boundary conditions

specified directly from the experiments, and use this model to improve the processing of

particle tracking velocimetry results. Using simulated flow-fields, we examine the spatial

distribution of flow shear rate, an important quantity related to power dissipation and rel-

evant for studies on locomotion in complex, shear-dependent fluids. We show that using

purely planar data significantly underestimates the true value of the shear rate throughout

the field. We then use symmetry arguments validated against numerics to show that the

2D measurements can be corrected for out-of-plane effects by applying the incompress-

ibility constraint. Our work shows that fundamental fluid mechanics tools can be used

alongside experimental measurements to improve our understanding of the biomechanics

of locomotion.

2.1. Methods

We first describe the technical improvements carried out in this work. In order to compare

the results of the numerical model directly with our experimental data, we use the same

swimming movie to construct experimental velocity fields and to obtain the motion of

the nematode, which provides the nematode’s geometry and kinematics for the numerical

simulations.
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Figure 2: (a) Image of the nematode C. elegans. The yellow line shows the “skeletonized”
body, and the red arrows denote the velocities of each body-segment. The blue arrow
indicates the swimming direction. (b) Three-dimensional mesh constructed from the
experimentally-obtained body-shape and kinematics of the nematode for the same snap-
shot. (c) Experimentally-measured streamlines for one snapshot of swimming C. elegans,
produced using particle tracking velocimetry techniques. (d) Flow-field produced using
the reconstructed 3D mesh and a numerical model for the same snapshot. Color bar: speed
mm/s.

Particle tracking procedures around swimmers entail a delicate balance between maximiz-

ing the quantity of statistics from which to construct a velocity field, and the precision of

those measurements. For C. elegans, one needs enough statistics to construct a smooth,

differentiable velocity field, yet the most precise particle tracking data is located strictly

at the nematode z-mid-plane (direction across the depth of field). Additionally, due to

the fact that our microscope objectives have a depth of field of approximately 20 µm, our

experiments represent a depth-averaged 2D slice of a 3D flow-field over this thickness.

Here, the simulation provides benchmark flow-fields, allowing greater selectivity for our

particle identification and tracking algorithms. This selection ensures that we only choose

particles close to the z-mid-plane, shifting the balance from maximizing the number of

statistics to maximizing the precision of our measurements. In regions where we have

limited data, we use gentle maximum value and bilateral filtering algorithms to smooth

our experimental results so that they can be differentiated.
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2.1.1. Data acquisition and processing

Experiments with C. elegans are performed in Newtonian, water-like (µ ≈ 1 mPa · s and

ρ ≈ 103 kg/m3) M9 buffer solutions (Brenner, 1974) in a sealed fluid chamber 20 mm in

diameter and 1 mm in depth. Images are captured using standard bright-field microscopy

(Infinity K2/SC microscope with a CF-4 objective, and an IO Industries Flare M180 camera

at 150 frames per second). The depth of focus of the objective is approximately 20 µm, and

we ensure that the focal plane is in the middle of the chamber in order to minimize wall

effects. The nematode beats primarily in the observation plane; the out-of-plane beating

amplitude is less than 6% of its in-plane motion, and therefore confinement effects are

minimal (Sznitman et al., 2010b). Given that the flow decay is expected to be exponential,

we also anticipate negligible influence of the chamber boundaries on the flow field (see

Fig. 4) (Lighthill, 1976). All data presented here pertain to nematodes swimming at the

centre of the fluidic chamber and out-of-plane recordings are discarded to avoid nematode-

wall interactions and to minimize three-dimensional flow effects.

In-house software is used to track the swimming motion of C. elegans. The position of the

nematode’s centroid is differentiated with respect to time to obtain swimming speed (U ≈

0.3 mm/s), the head position is used to compute an average amplitude (A ≈ 0.25 mm),

and a comparison of periodic body shapes is used to estimate the nematode’s beating

frequency ( f ≈ 2 Hz). Beyond average kinematic properties, the nematode body contour

is automatically extracted for each image frame, skeletonized (yellow line in Fig. 2a), and

divided into segments that are tracked to obtain local body velocities. Sample velocity

vectors of the body are shown in Fig. 2a in red. This body shape and associated velocities

are used to create an approximate 3D model of the nematode and its surface velocities, as

illustrated in Fig. 2b.

Particle tracking velocimetry is used to measure the velocity fields generated by swimming

C. elegans. In short, we seed the chamber with 3 µm polystyrene tracer particles (Fig. 2a)
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that are tracked using with in-house algorithms. We track the flow for approximately 8

beat-cycles, and divide each cycle into approximately 50 phases. Because the nematode’s

swimming stroke is highly periodic (∼ 2 Hz) (Sznitman et al., 2010b), we can construct a

“master” swimming cycle using a least-squares fit of the nematode’s body shapes. This

phase-averaging technique considerably improves the spatial resolution of the experimen-

tal velocity fields. In order to estimate the flow-field around the nematode’s body more

accurately, we include velocities within the contour of the the swimmer-fluid interface, as-

suming a no-slip boundary condition. Finally, the data points for each phase, including

tracking plus boundary conditions, are averaged into gridded spaces of size 13.2 µm. The

resulting experimental streamlines are illustrated in Fig. 2c for one particular phase.

2.1.2. Numerical model

In this section, we describe the numerical model developed by our collaborators Thomas

Montenegro-Johnson and Eric Lauga for comparison to our experimental results (Montenegro-

Johnson et al., 2016). C. elegans moves through a water-like Newtonian buffer solution

(Brenner, 1974) and the dynamics of the flow driven by the swimming nematode is well-

modeled by the Stokes flow equations

µ∇2u−∇p = 0, ∇ · u = 0, (2.1)

where u is the fluid velocity and p the dynamic pressure.

In order to solve Eqs. (2.1) in the fluid surrounding the nematode, we employ the regu-

larized stokeslet boundary element method (Cortez et al., 2005; Smith, 2009). The velocity

throughout the domain is given by integrals of stokeslets S and stresslets T over the nema-
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tode’s surface, S

λuj(x0) =
∫

S
Sε

ij(x, x0) fi(x)

− ui(x)Tε
ijk(x, x0)nk(x)dSx, (2.2)

for unknown surface tractions, f, and surface velocity u specified from experimental data (Montenegro-

Johnson et al., 2016).

Note that in the majority of implementations of the method of regularised stokeslets, the

stresslet “double-layer” ui(x)Tε
ijk(x, x0)nk(x) term in equation (2.2) is eliminated, and the

constant λ = 1 (Pozrikidis, 1992). However the surface tractions solved for in the simpli-

fied “single layer” formulation are a modified force density dependent upon a fictitious

“complementary” flow inside the worm. In order to provide a general method that might

in the future be used to examine the energetics of locomotion and force generation inside

the worm, the full formulation is used (Montenegro-Johnson et al., 2016).

In our case, the constant λ is given at leading order by λ ≈ 1/2 + κε/4, where κ is the

mean local curvature of the surface at x0 (Montenegro-Johnson et al., 2015). We use the

regularized form of the stokeslet Sε
ij and stresslet Tε

ijk (Cortez et al., 2005),

Sε
ij(x, x0) =

δij(r2 + 2ε2) + rirj

r3
ε

, (2.3a)

Tε
ijk(x, x0) = −

6rirjrk

r5
ε

−
3ε2 (riδjk + rjδik + rkδij

)
r5

ε

, (2.3b)

derived from a regularisation of the dirac delta function of the form

φε(x− x0) =
15ε4

8πr7
ε

, r2
ε = r2 + ε2, (2.4)
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Figure 3: Spatial distribution of the (a) experimentally-measured x-component u(x, y), (b)
simulated x-component, (c) experimentally-measured y-component v(x, y), and (d) sim-
ulated y-component. Experimental measurements demonstrating good agreement with
simulation. Color bars: component velocity magnitude mm/s.

where ri = (x − x0)i, r = |x − x0| and ε � 1 (with ε = 10−4L in our simulations).

The implementation uses routines adapted from BEMLIB (Pozrikidis, 2002) and Thomas

Montenegro-Johnson’s boundary element library RegBEM Phoretic (Montenegro-Johnson

et al., 2016), which employs a linear panel representation of the unknown surface tractions

fi(x) with adaptive Fekete quadrature for near-singular element integrals (Montenegro-

Johnson et al., 2015, 2016).

The nematode geometry is meshed with piecewise-quadratic triangular elements (Fig. 2b)

using a custom routine which extrudes a circle of radius a(s) along the experimentally-

captured nematode centerline, and caps the head and tail of the worm with a section of a

sphere. The radius a(s) is given as a function of arc-length s by fitting a quadratic through

the nematode’s radius at the midpoint a1 and the head a2, so that for a nematode of length

L we have

a(s) =
4(a2 − a1)

L2

(
s− L

2

)2

+ a1. (2.5)

The velocity boundary condition (no-slip) is then imposed on the mesh surface directly

from experimental data via time-centered finite differences of the nematode centerline (Montenegro-

Johnson et al., 2016).
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2.2. Results and Discussion

2.2.1. Comparison of experiments and simulations

Fig. 2 shows the streamlines computed experimentally using particle tracking velocimetry

(c) and numerically using simulated flow-fields (d). These streamlines show strong agree-

ment, with both methods capturing head and tail vortices of similar shape and size. A

visual comparison of the x- and y-components of the velocity field, u and v respectively,

again shows very good agreement between experiment and simulation (Fig. 3). In order

to quantify this comparison, Fig. 4(a,b,c) shows the distributions of velocity components

u and v and speed |u| for experimental and simulated fields. These plots show that the

experiments capture the majority of velocities, with the exception of the highest velocities

corresponding to points closest to the nematode, where it is difficult to obtain accurate

particle tracks. Experiments also predict a larger proportion of zero velocities, which is

again associated with the difficulty of extracting smooth, small, but non-zero, velocities

from noisy particle data.

Finally, we calculate the spatial decay of the flow speed away from the body of the swim-

mer. For an undulatory swimmer, we expect to observe an exponential flow decay (Lighthill,

1976),
|u|
|ub|

= exp
(
−2πr

αL

)
, (2.6)

where |u| is a velocity measurement, |ub| is the speed of the swimmer’s body, assuming

a no-slip boundary condition, r is the normal distance from each velocity measurement

to the swimmer’s body, L is a characteristic length-scale of the swimmer (we take L ≈

1 mm), and α is an exponential parameter that specifies the rate of decay. We find that

the simulations and experiments are in good agreement with αexp = 0.74 and αsim = 0.85,

showing a difference of just 13% in the exponent (Fig. 4, last panel).
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Figure 4: Comparison of flow structure between experiment and simulation: (a) distribu-
tion of u, (b) distribution of v, (c) distribution of speed |u|, and (d) decay rate |u|/|ub|.

2.2.2. Shear rate calculation and correction

A particularly salient characteristic of the flow-field is the spatial ditribution of shear rate,

γ̇ =
√

ε(u) : ε(u)/2 with ε(u) = ∇u +∇uT, which is important for calculation of power

dissipation, the energetics of locomotion, and is also relevant for studies on locomotion in

complex, (shear) rate-dependent fluids. Since the beat-pattern of the nematode is planar,

there is no flow in the z-direction in the swimmer mid-plane. However the z-derivatives

of the mid-plane velocity will make, in general, non-trivial contributions to the shear rate.

Writing the shear rate in 2D and 3D explicitly, we see

γ̇2D = [2u2
x + (uy + vx)

2 + 2v2
y]

1/2, (2.7a)

γ̇3D = [2u2
x + (uy + vx)

2 + 2v2
y

+ 2w2
z + (uz + wx)

2 + (vz + wy)
2]1/2, (2.7b)

where u, v, w are the x, y, z components of the velocity field, and subscripts denote deriva-

tive components.

Because of the additional terms in the 3D formula, we expect calculation of the shear rate

from 2D particle tracking flow-fields will likely result in a systematic underestimate of the

true 3D value. Fig. 5a shows that this is indeed the case; the spatial distribution of the
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relative percentage error in the simulated shear rate calculated with the 2D formula (2.7a)

compared with the true 3D value spatial distribution of the shear rate as calculated by the

3D (2.7b) is significant, even reasonably far from the worm, and is around 30% close to the

worm. Indeed the integrated root mean square error in this field is 14%. Thus, we see that

we have significant errors throughout the field, but particularly close to the worm where

calculations of shear rate are of particular interest.

We wish to correct for this error without resorting to Boundary Element calculations, and

so require estimates of the unknown quantities in the 3D formula (2.7b). Since the worm

kinematics is planar, we have the symmetry z → −z, and so there is no z-flow in the mid-

plane and the quantities wx and wy are zero. Furthermore, the quantities uz and vz are also

zero by this symmetry. These observations are confirmed by our numerical simulation,

which calculates the above quantities to be zero within numerical error. However, the z-

component of the velocity w changes sign through the mid-plane, and thus its z-derivative

wz makes a significant contribution to the shear rate. The 3D formula (2.7b) can thus be

simplified,

γ̇pl = [2u2
x + (uy + vx)

2 + 2v2
y + 2w2

z ]
1/2. (2.8)

Since the flow is incompressible, we have∇ · u = 0, so that wz = −(ux + vy), giving the

final formula

γ̇pl = [2u2
x + 2v2

y + (uy + vx)
2 + 2(ux + vy)

2]1/2, (2.9)

purely in terms of planar components obtainable via planar particle tracking. Applying

the adjusted formula (2.9) to our numerical data, the error is eliminated to within 0.01%

which is attributable to the accuracy of our numerical scheme.

The principal advantage of this approach is that it can be applied in just as simple a man-

ner to incompressible non-Newtonian flows, such as shear-thinning and viscoelastic flu-

ids. Such fluids have complex non-Newtonian constitutive laws, and do not readily admit
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Figure 5: Shear rate error, calculation, and correction: (a) The percentage relative error in
the shear rate as calculated using the 2D formula (2.7a) for simulated data, showing large
errors throughout. (b)-(d) Shear rate field for (b) planar 2D experiments calculated with
the 2D formula (2.7a), (c) 3D simulation calculated with the full formula (2.7b), and (d)
corrected “3D” experiments calculated with the corrected formula (2.9). (e) Distribution
of shear rates for planar experiments, 3D simulation, and corrected experiments. Note
the marked improvement in similarity between shear rate distribution for the corrected
experiments and that of the full 3D simulation.

simple three-dimensional simulation.

We now directly compute the 2D (2.7a) and the estimated 3D (2.9) shear rate field for our

experimental data (Fig. 5b). Figure 5 shows a comparison between the “corrected” 3D

shear rate field from experiments and the 3D shear rate field from simulations (c,d). We

find the corrected field from experiments and the simulated 3D field have a strikingly

similar structure and an RMS error of only 14%, compared to an RMS error of roughly 20%

before the correction was applied. We note, however, that there are discrepancies near

the head and tail of the worm, where the simulations suggest a slightly higher shear rate

(≈ 10%); these regions of high velocity near the swimmer-fluid interface are in locations

where we expect particle tracking techniques to pose the greatest challenge.

To quantify the differences between the shear rate fields of the simulations and experi-

ments, as well as demonstrate the effectiveness of our correction factor for 2D data, we

show the distribution of shear rate for the raw experimental data, corrected experimental

data, and the full 3D simulations (Fig. 5e). We find that a 2D calculation of shear rate using
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our experimental data underestimates shear rate for values of γ̇ > 25 s−1 compared to the

3D simulated shear rate field. When the Eq. 2.9 is applied to the experimental data, we

capture the same shear rate distribution as the 3D simulations up to γ̇ = 60 s−1. For larger

shear rates (γ̇ > 60 s−1), we see only minor deviations from the 3D simulations, suggesting

that the corrected shear rate field significantly improves our ability to estimate the shear

rate magnitude from planar data.

Since the shear rate is calculated using derivatives of the velocity field, small fluctuations

or errors in the velocity field are magnified substantially. Nonetheless, we obtain good

agreement between experiment and simulation, with errors being confined to regions of

high shear rate; importantly, we find that the application of the analytical correction factor

greatly improves our estimate of the maximum shear rate around the swimmer, which is

particularly useful for swimming applications with non-Newtonian fluids. These results

indicate that the local shear rate near a low Reynolds number swimmer is likely much

higher than previously thought, due to contributions in the third dimension that planar

particle tracking velocimetry does not directly measure. As a result, non-Newtonian ef-

fects as a result of locomotion in complex fluids may be much larger than anticipated.

Examples include the role of elastic stretching, measured by the Weissenberg number

Wi = λEγ̇ where λE is the longest relaxation time of the fluid, and shear-thinning vis-

cosity behavior, measured by the Carreau number Cr = λCrγ̇ where λCr is a timescale

that represents the onset of shear-thinning effects; our accounting for the shear rate in the

third dimension therefore suggests that a planar experimental measurement may under-

represent non-Newtonian effects near the body of a the swimmer.

2.3. Summary

In this work, we used theoretical and numerical techniques to improve the processing of

experimentally obtained particle tracking data, producing smooth velocity fields quantify-

ing the flow around the swimming nematode C. elegans in a Newtonian solution. We com-
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pared our results with a 3D boundary element model of the nematode, generated directly

from experimentally obtained nematode kinematics, finding good agreement between nu-

merics and experiment.

We argued that when calculating derivative flow quantities, the only non-trivial out-of-

plane component is wz: the z-derivative of the z-flow. This observation was validated by

simulation, showing that excluding wz when calculating the flow shear rate results in a

significant underestimate. Accounting for the wz component via incompressibility from

2D data eliminated this error.

Our work illustrates how theory may be used to improve experimental measurements in

biological fluid mechanics, and will be directly applicable to investigations of bio-locomotion

in complex fluids. Furthermore, we anticipate that as technology for the acquisition and

processing of experimental flow-fields continues to improve, these out-of-plane effects will

represent a hard barrier to increasing the accuracy of results, making such techniques in-

creasingly important.
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CHAPTER 3 : Swimming in shear-thinning fluids

Recently, there has been much interest in understanding the swimming behaviour of mi-

croorganisms at low Re in simple, Newtonian fluids (Lauga and Powers, 2009; Guasto

et al., 2010; Saintillan and Shelley, 2012; Lauga and Goldstein, 2012). However, many or-

ganisms swim in non-Newtonian environments such as mucus, blood, and soil (Harman

et al., 2012; Alexander, 1991). An important feature of non-Newtonian fluids is that they of-

ten exhibit viscoelasticity and shear-rate dependent viscosity. While much work has been

devoted to the effects of fluid elasticity on the swimming of microorganisms (Lauga, 2007;

Fu et al., 2009, 2010; Teran et al., 2010; Shen and Arratia, 2011; Liu et al., 2011), there are

relatively few studies of swimming in shear-thinning fluids.

To date, major studies of the effects of shear-thinning viscosity have been theoretical (Vélez-

Cordero and Lauga, 2013) and numerical (Montenegro-Johnson et al., 2012, 2013). The the-

oretical analysis focused on a two-dimensional, infinite waving sheet immersed in a model

Carreau (shear-thinning) fluid, and found a non-Newtonian contribution to propulsion

speed to fourth order in amplitude when the sheet was extensible, but no non-Newtonian

contribution to propulsion speed when an inextensible condition was applied (Vélez-Cordero

and Lauga, 2013). Additionally, this analysis suggested the cost of transport was reduced

and the flow field was modified, with increased vorticity near the sheet. Additionally, for

a finite swimmer, this analysis suggested the cost of transport was reduced and the flow

field was modified, with increased vorticity near the sheet (Vélez-Cordero and Lauga,

2013). Separate simulations (Montenegro-Johnson et al., 2012, 2013) also using the Car-

reau model suggested that undulatory swimmers with a head or “payload” (similar to a

sperm cell) are assisted by shear-thinning viscosity, resulting in increased speed and that

the swimmer’s motion results in an envelope of thinned fluid around the body.

Despite these recent and important efforts, there is still a dearth of experimental investi-
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gations of swimming in shear-thinning fluids, and the effects of rate-dependent viscosity

on swimming remain unclear. Experiments with a mechanical model system (Dasgupta

et al., 2013) finds a decrease in propulsion for fluids possessing both shear-thinning and

viscoelastic behavior, while the swimming speed of C. elegans is shown to be unaffected

by shear-thinning viscosity (Shen and Arratia, 2011) although only a single data point

is available. Here, we experimentally investigate the effects of shear-thinning viscosity

on the swimming behaviour of a model biological organism, the nematode Caenorhabditis

elegans. The nematode’s position and swimming stroke is tracked using in-house soft-

ware (Sznitman et al., 2010c) and flow fields are obtained using particle tracking meth-

ods (Sznitman et al., 2010b). Results show there is no change in the nematode’s kinematics

due to shear-thinning effects. Yet with this unchanged swimming stroke, the nematode in

shear-thinning fluid generates a remarkably different flow field, with enhanced vorticity

and an altered spatial pattern of fluid velocity. We compare these experimental results to

recent analysis (Vélez-Cordero and Lauga, 2013) and numerical simulations (Montenegro-

Johnson et al., 2012, 2013).

3.1. Fluid rheology

We use both Newtonian and shear-thinning fluids in this investigation. The range of

Reynolds numbers, defined as Re = ρUL/η, is 10−4 < Re ≤ 0.35 across all experiments,

where Re = 0.35 represents the water-like case. For shear-thinning fluids, we use η mea-

sured at the estimated mean strain rate (from velocity fields) in computing the Re, which

defines the fluid effective viscosity ηe f f in our experiments. We could alternately use the

zero-shear-rate viscosity η0 instead, but this choice would underestimate Re. Since the non-

Newtonian fluid viscosity is rate-dependent, the use of the mean strain-rate to estimate η

seems appropriate.

We prepare Newtonian fluids to cover a range of viscosities, ranging from 1 mPa·s to

700 mPa·s. From lowest to highest viscosity, we use (i) a water-like buffer solution (M9
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Figure 6: (a) Measurements of viscosity η as a function of shear rate γ̇ for the Newtonian
buffer solution M9 (closed symbols), CMC solutions in M9 (blue open symbols, concen-
trations from bottom to top: 300, 500, 1000, 1500, 2000, and 3000 ppm, Sznitman et al.
(2010b)), and halocarbon oil mixtures (grey open symbols, from bottom to top: 100% H27,
44% H700, 61% H700, 78% H700, and 95% H700 by weight, Shen and Arratia (2011)). (b)
Measurements of viscosity η as a function of shear rate γ̇ for shear-thinning solutions of
XG in M9 (from bottom to top: 50, 100, 200, 300, 500, 1000, 2000, and 3000 ppm). The solid
black line shows a fit to the Carreau-Yasuda model (Eq. 3.1) (c) Carreau timescale λCr as
a function of concentration (MMM) and power law index n (◦) as a function of concentration
cXG.

salt solution) (Brenner, 1974), (ii) very dilute solutions of the polymer carboxymethyl cel-

lulose in M9 salt solution (CMC, 7× 105 MW, Sigma Aldrich 419338), and (iii) mixtures of

two molecular weights of chlorotrifluoroethylene (halocarbon oils H27 and H700; Sigma

Aldrich H8773 and H8898, respectively) (Sznitman et al., 2010b). We note that halocarbon

oil mixtures are limited to only Newtonian swimming kinematics data due to a significant

density mismatch between these polymer solutions and polystyrene tracer particles. The

polymer CMC possesses a flexible backbone, and (aqueous) solutions of CMC may exhibit

viscoelasticity. Here, however, we minimize the effects of elasticity by using a low poly-

mer concentration (cCMC . 103) in comparison to the overlap concentration c∗CMC = 104

in addition to the presence of salt (M9) (Sznitman et al., 2010b). As a result, these solu-

tions exhibit negligible shear-thinning rheology and elasticity (Shen and Arratia, 2011),

and sample rheology curves for CMC solutions are given in Fig. 6(a).

We prepare shear-thinning fluids by adding small amounts of the polymer xanthan gum

(XG, 2.7× 106 MW, Sigma Aldrich G1253) to water in the presence of salt. The XG concen-
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tration in buffer ranges from 50 ppm to 3000 ppm. These aqueous XG solutions have been

well characterized and are known to have negligible elasticity (Shen and Arratia, 2011;

Gagnon et al., 2014a). We characterize all fluids (Newtonian and shear-thinning) using

a cone-and-plate rheometer (strain-controlled RFS III, TA Instruments) at a range of con-

stant shear rates. Fig. 6(a) and Fig. 6(b) show the fluid viscosity η as a function of shear

rate measurements for Newtonian and shear-thinning fluids, respectively. We find strong

shear-thinning behavior (e.g. power law viscosity) for the most concentrated XG solution

(cXG = 3000 ppm), and this shear-thinning behavior gradually decreases as the concen-

tration of XG decreases; at the lowest concentration (cXG = 100 ppm), the behavior of the

XG solutions is Newtonian-like. We quantify this shear-thinning viscosity by fitting the

rheological data with the Carreau-Yasuda model (Carreau et al., 1997):

η (γ̇) = η∞ + (η0 − η∞)
(

1 +
(
λCrγ̇

)2
) n−1

2
, (3.1)

where η (γ̇) is the fluid’s shear rate-dependent viscosity, γ̇ = |γ̇| ≡
√

1
2 (γ̇ : γ̇) is the

magnitude of the shear rate tensor γ̇ ≡ 1
2

(
∇u +∇uT

)
, η0 is the zero-shear viscosity, η∞ is

the infinite-shear viscosity, and n is the power-law index.

The characteristic timescale λCr represents the inverse of the shear rate at which the fluid

transitions from Newtonian-like to power-law behavior; values of λCr for each fluid are

shown in Fig. 6(c). Larger timescales indicate that the fluid exhibits shear-thinning prop-

erties at lower shear rates (Carreau et al., 1997). Using this timescale, we can define a

non-dimensional shear rate based on the kinematics of the nematode. This kinematic Car-

reau number describes the strength of the shear-thinning behavior, and we define it as

Crk = 2πλCr f Ak, where f is the beating frequency, A is the average beating amplitude,

and k is the wave number of the swimming nematode (Li and Ardekani, 2015). A fluid

behaves Newtonian-like when Crk � 1 with a viscosity η ≈ η0. When Crk & 1, the fluid

exhibits shear-thinning behavior. The power-law index n, shown in Fig. 6(c), describes the
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sensitivity of the fluid’s viscosity to changes in shear rate.

3.2. Swimming Kinematics

First, we investigate the swimming kinematics of nematodes in Newtonian and shear-

thinning fluids. Figure 7(a-f) show the nematode’s (a) swimming speed U, (b) beating

frequency f , (c) beating amplitude A, (d) wave speed c, (e) Strouhal number St = f A/U,

and (f) kinematic efficiency U/c as a function of effective viscosity ηeff for both Newtonian

and shear-thinning fluids. Note that for shear-thinning fluids, ηeff is defined as the average

viscosity over a characteristic range of shear rates, U/L ≤ γ̇ ≤ 2 f A/d. The rate U/L ∼

0.35 s−1 describes the forward progress of the entire nematode, and the rate 2 f A/d ∼

15 s−1 describes the nematode’s local transverse motion, where d/2 ∼ 40 µm is the body

radius. These estimates are in good agreement with measured shear rates.

The data in figure 7 show that the nematode’s swimming kinematics in shear-thinning

fluids are very similar to those in Newtonian fluids of the same effective viscosity. This

suggests that the nematode’s kinematics are responding solely to bulk viscous effects and

not local shear-thinning effects. For example, the nematode’s swimming speed U (fig-

ure 7(a)) is approximately constant for both shear-thinning and Newtonian fluids up to

ηeff ≈ 50 mPa·s. A decrease in U is also found for both shear-thinning and Newtonian

fluids for ηeff > 50 mPa·s, which is in agreement with the power-limited nature of C. ele-

gans (Shen and Arratia, 2011).

Overall, we find no evidence that shear-rate-dependent viscosity influences the swimming

stroke or speed of C. elegans. Our findings seem to be in agreement, at least in part, with

a recent theoretical work (Vélez-Cordero and Lauga, 2013), in which the authors find no

shear-thinning-induced changes to swimming speed for an inextensible sheet. For an ex-

tensible sheet, the same study finds an increase in swimming speed in shear-thinning flu-

ids. We note, however, that there are differences between our experimental system and
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Figure 7: Summary of nematode kinematics for Newtonian (◦) and shear-thinning (�)
fluids. (a) Swimming speed U, (b) frequency f , (c) head amplitude A, (d) wave speed c,
(e) Strouhal number St and (f) kinematic efficiency U/c as a function of effective viscosity
ηeff . Each data point represents the mean and standard error of approximately 15 record-
ings.

the aforementioned theoretical study. For example, the nematode is of finite-length and

swims using large-amplitude waves that decay from head to tail, while the theoretical

work focuses on an infinite, two-dimensional waving sheet of prescribed, small-amplitude

kinematics. Thus, quantitative agreement is not expected.

We can also compare our findings to numerical simulations (Montenegro-Johnson et al.,

2012, 2013) that have predicted an enhancement in swimming speed; however, the en-

hancement predicted by this study is for a swimmer with an elliptical head and a linearly

increasing amplitude from head to tail; since C. elegans has no “head” and conversely has a

decreasing amplitude from head to tail, these differences in geometry and stroke may ex-

plain the discrepancy between these simulations’ predictions and our experimental mea-

surements (Montenegro-Johnson et al., 2012, 2013).
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Figure 8: (a-c) Time-averaged fluid velocity magnitude for one beating cycle of C. elegans
in (a) Newtonian buffer solution, (b) shear-thinning 200 ppm XG solution, and (c) shear-
thinning 1000 ppm XG solution.

3.3. Velocimetry, Flow Fields, and Streamlines

In the preceding section, we showed that the swimming strokes of nematodes in shear-

thinning and Newtonian fluids are quite similar (if not identical). However, the same kine-

matics may generate different velocity fields. Since the swimming stroke corresponds to

the imposed fluid boundary conditions, in Newtonian fluids we expect flow fields to have

a common morphology, with velocity magnitudes merely scaling with viscosity. How-

ever, under the same boundary conditions, a non-Newtonian constitutive relation might

result in measurable changes to the flow fields. To investigate this possibility, we use par-

ticle tracking to measure the flow fields around swimming C. elegans in shear-thinning

and Newtonian fluids. We seed the fluids with 3.1 µm-diameter fluorescent polystyrene

spheres, which are tracked in space and time (Sznitman et al., 2010b; Gagnon et al., 2013).

The particles are very dilute (< 0.5% by volume) and do not alter the fluid rheology.

Because the nematode’s swimming gait is periodic (Fig 1(c)), we can significantly increase

the spatial resolution of our flow field measurements by using a phase averaging scheme.

We condense multiple beating cycles into a single “master” cycle by matching frames with
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Figure 9: (a) Snapshot of the streamlines obtained using particle tracking techniques
around C. elegans in a Newtonian buffer solution (η = 1 mPa·s) at the moment of maxi-
mum fluid velocity. Color represents the magnitude of the local velocity field. (b) Snapshot
of the streamlines around C. elegans during the same phase of motion in a strongly shear-
thinning fluid (Carreau timescale λCr ≈ 6.5 and power-law index n ≈ 0.5). See Fig. 6 for
more detail.

the same curvature profile κ(s, t), using a least-squares algorithm. This master cycle com-

prises body shapes and velocity fields at approximately 65 different phases. For more

details on this technique, see Sznitman et al. (2010b).

Figure 8 shows time-averaged velocity magnitude fields in (a) buffer solution (Newto-

nian), (b) 200 ppm XG solution, and (c) 1000 ppm XG solution over one beating cycle. Two

features are immediately obvious. First, the regions of high velocity (dark color) at the ne-

matode’s midsection seem to change and intensify as XG concentration and shear-thinning

effects are increased. Second, there is an overall decrease in average velocity near the head

and an increase near the tail as XG concentration increases. These data show that velocity

fields generated by swimming nematodes can be modified by shaer-thinning effects, even

as the imposed swimming kinematics remain unchanged.

To better examine shear-thinning effects on the velocity fields, we focus on one particu-

lar phase of the beating cycle. While we expect shear-thinning effects at every phase, we
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examine the phase with the largest average shear rate, since this snapshot should reveal

the most pronounced differences between Newtonian and shear-thinning fluids. Figure 9

shows the fluid streamlines and velocity magnitude (color) at one phase in (a) M9 buffer

solution and (b) 1000 ppm XG solution. The streamlines suggest that in the shear-thinning

case, the characteristic “head” and “tail” vortices have shifted towards the head and ap-

pear more concentrated. The difference in velocity magnitudes near the midsection is

located near the center of the head vortex, suggesting a potential way to quantify shear-

thinning effects.

3.4. Quantifying the Role of Shear-Thinning through Vorticity

So far we have shown that shear-thinning viscosity has negligible effect on the nematode’s

swimming kinematics (figure 7) but it does seem to affect the velocity fields generated by

swimming (figure 9). Here, we quantify those effects and seek to connect them with the

fluids’ shear-thinning rheology. We begin by inspecting the flow structure (vortex) near

the nematode’s head for both the Newtonian and shear-thinning fluids (figure 9(a) and

(b)). For each fluid, we take the velocity field at the same phase as in figure 9, sampled at

a grid of points spaced 21 µm apart. We compute vorticity w in two dimensions, so that

wz ≡ ∂vy/∂x− ∂vx/∂y.

Figures 10(a) and (b) show vorticity fields for the 50 and 500 ppm XG solutions, respec-

tively, with the head vortices outlined; note that the 50 ppm XG vorticity map is not sub-

stantially different from the Newtonian case (not shown). We define the head vortex as the

region near the head with |w| greater than 10% of the local maximum. The head vortex

is in fact the region of highest vorticity over the entire flow field. The two vorticity fields

suggest that increasing the concentration of XG, and thus the shear-thinning behavior of

the fluid, increases the magnitude and size of the head vortex. We note that this is not

simply due to a change in bulk or “average” viscosity, since increasing viscosity would

merely scale the vorticity field without changing its shape.
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Figure 10: Vorticity map calculated for C. elegans swimming in (a) 50 ppm XG in M9 and
(b) 500 ppm XG in M9. The region of the head vortex (outlined in black) is defined as the
region with vorticity greater than 10% of the local maximum. (c) Circulation Γ of the head
vortex for M9 and shear-thinning fluids as a function of the expected local importance
of shear thinning, Cr = λCrγ̇, where λCr is the Carreau timescale and γ̇ is the measured
average local shear rate.

Next, we measure the circulation or vorticity flux Γ, which can be thought of as the total

vorticity normal to the surface of interest. We compute Γ as the discrete integral of vorticity

wz,i at each grid cell i within the vortex region: Γ = ∑ awz,i, where a is the area of a grid

cell. We also use the velocity field and fluid rheology to estimate the expected importance

of shear-thinning behavior in the vortex region. This is quantified with a Carreau number

Cr = λCrγ̇. The characteristic vortex shear rate γ̇ is the root-mean-squared average over

all grid cells in the vortex, where each cell’s local shear rate is computed as γ̇ ≡ ∂vx/∂y +

∂vy/∂x.

Figure 10(c) summarizes our measurements of circulation Γ for a range of Carreau numbers

Cr, corresponding to a Newtonian fluid (M9, Cr = 0) and all tested XG concentrations.

We find that circulation is generally enhanced as shear-thinning effects are increased. We

also observe a similar trend in vorticity magnitude both temporally and spatially for the

entire cycle. At high Cr (corresponding to high XG concentrations), the increase in overall

viscosity appears to suppress circulation: these data points are close to the power-limited
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regime, and for fluids above Cr ≈ 15, the shear stresses needed to access the shear-thinning

regime exceed σ = 0.1 Pa. However, for 0 < Cr < 15 (XG concentrations ≤ 1000 ppm),

the measured circulation and vorticity are larger than in the Newtonian case, and this

suggests agreement with previous theoretical work, which predicted enhanced vorticity

in shear-thinning fluids (Vélez-Cordero and Lauga, 2013).

3.5. The cost of swimming in shear-thinning fluids

We now begin our discussion on estimating the cost of swimming or mechanical power

of swimming C. elegans from velocimetry and nematode tracking data. Here, we consider

the flow of an incompressible fluid at low Reynolds number. Under these conditions, the

equation of motion and the continuity equation are:

∇ · σ = −∇p +∇ · τ = 0 (3.2)

∇ · u = 0, (3.3)

where u is the fluid velocity and σ is the total stress tensor. The stress is defined as

σ = −pI + τ, (3.4)

where p is pressure, I is the identity tensor, and τ is the shear (deviatoric) stress. Steady

flow is assumed since the “frequency” Reynolds number is much less than one: Re f =

ρA2 f /µ� 1, where f and A are the nematode’s beating frequency and amplitude, respec-

tively (Childress, 1981).

Next, we consider the energy expenditure of a swimming nematode under the above con-

ditions and assumptions. Conservation of energy requires the power expended by the

swimming nematode by deforming its body to be equal to the energy dissipation rate of

the surrounding fluid. This relationship naturally provides two methods for estimating the
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cost of swimming or mechanical power as we will see below. We define the mechanical

power associated with the motion of the nematode surface S as its rate of work:

P = −
∫

S
n · σ · u dS, (3.5)

where u is the velocity of the surface. We assume that inertial and body forces are negli-

gible for a swimming nematode, and the only forces acting on the swimmer are viscous

surface forces F =
∫

S n · σ dS = 0. This integral of the surface force must be zero since the

swimmer is self-propelled and force-free (Lauga and Powers, 2009).

Next, we can apply the divergence theorem to Eq. 3.5 to transform the surface integral into

a volume integral over the surrounding fluid V with the assumption that u vanishes far

from the swimmer (Lighthill, 1976). This transforms the surface’s rate of work into the rate

of viscous dissipation of the fluid:

P = −
∫

S
n · σ · u dS =

∫
V
∇ · (σ · u)dV. (3.6)

Distributing the divergence operator on the volume integral yields:

P = −
∫

S
n · σ · u dS =

∫
V
(∇ · σ) · u + σ : ∇u dV. (3.7)

By Stokes equation (Eq. 3.2), the first term in the volume integral must be zero. Further-

more, we can substitute σ in the volume integral with the definition of the stress tensor σ

(Eq. 3.4) so that:

P = −
∫

S
n · σ · u dS =

∫
V
−pI : ∇u + τ : ∇u dV. (3.8)
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Note that I : ∇u = ∇ · u = 0, for an incompressible fluid, yielding the energy balance:

P = −
∫

S
n · σ · u dS =

∫
V

τ : ∇u dV. (3.9)

Lastly, the right-hand side of Eq. 3.9 is equal to the fluid’s viscous dissipation:

Φ =
∫

V
τ : ∇u dV. (3.10)

Equation 3.9 reveals two methods for estimating the cost of swimming via both a calcula-

tion of the swimmer’s mechanical power (P, Eq. 3.5) and an estimate of the surrounding

fluid’s viscous dissipation rate (Φ, Eq. 3.10). In what follows, we will use Equation 3.9

along with experimental data (nematode tracking, velocimetry, and rheology) to estimate

the cost of swimming for C. elegans. There are three necessary ingredients: (i) the instanta-

neous position of the surface S (obtained from nematode tracking) and the corresponding

fluid volume V, (ii) a spatially differentiable flow field u (from particle tracking), and (iii)

a constitutive model for the fluid stresses σ (from rheology and Equation 3.1). First, we

measure the instantaneous position of the surface S and its outward normal n by track-

ing the body of the nematode using bright-field microscopy (Fig. 1(a)). Image processing

provides an outline of the nematode’s body in a two-dimensional plane; to estimate S, we

multiply the observed body shapes by the diameter of the nematode’s body (80 µm) to

form a thin surface area. For our estimate of the viscous dissipation rate, we consider the

area formed by the plane of observation in our region of interest (approximately 2 mm

by 2 mm). Beyond this region of interest, the velocities of the fluid are below the noise

level of our particle tracking measurements. Similar to our surface integral, we multiply

this area by the diameter of the nematode’s body (80 µm) to form a small, thin volume.

For both integrals (surface and volume), we note this assumes a uniform planar flow field

within 40 µm of the mid-plane of the worm. The thinness of the selected volume aims to
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minimize errors associated with the three-dimensional nature of the flow. Second, using

particle tracking velocimetry, we measure the velocity fields u and, because u is spatially

resolved, the associated shear rate tensor γ̇ (Fig. 9(a) and (b)).

Lastly, we consider the constitutive equation necessary to estimate the fluid stress tensor

σ = −pI + τ. The pressure p is found by integrating Stokes equation from the bound-

ary of our velocity field to the fluid-swimmer interface; note that the contribution of the

isotropic static pressure p0 vanishes over a closed integral and as a result is negligible. For

Newtonian fluids, we simply use Newton’s law of viscosity τ = ηγ̇. For shear-thinning

fluids, the shear (deviatoric) stress is estimated for each beating phase by first differentiat-

ing the velocity field to obtain a shear rate field. We then use the Carreau-Yasuda model

(Eq. 3.1) along with the rheological data shown in Fig. 6(b,c) to calculate a viscosity field

for all shear-thinning fluids.

Figure 11 shows snapshots of the spatial viscosity fields normalized by zero-shear viscos-

ity η/η0 for a particular beating phase in different XG solutions. Viscosity is color-coded

such that blue corresponds to zero-shear viscosity and yellow highlights regions of strong

shear-thinning behavior; one can also consider locations with decreased viscosity as high-

lighting regions of large shear rate magnitude in the flow. Figure 11(a) shows the estimated

viscosity field for the 200 ppm XG solution, which has a power-law index of n = 0.85 and

a Carreau timescale of λCr = 0.4 s. The largest decrease in normalized viscosity for this

fluid is approximately 15%. Figure 11(b) shows the result for a solution of n = 0.70 and

λCr = 1.2 s, which exhibits a decrease in viscosity of nearly 30%. Finally, Fig. 11(c) shows

the viscosity fields for nematode’s swimming in a XG solution of n = 0.60 and λCr = 3.5 s.

Here, we observe the formation of a highly-thinned fluid envelope around the nematode

that extends approximately 0.5 mm (or half body length) away from the nematode’s body;

the viscosity decrease near the swimmer is approximately 60%. The viscosity fields for

nematodes swimming in highly shear-thinning fluids, n < 0.5 and λCr > 5 (not shown),
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Figure 11: Viscosity fields, normalized by the fluid’s zero-shear viscosity η0, for a selection
of XG solutions at an instant in time: (a) 200 ppm, (b) 300 ppm, (c) 500 ppm XG.

show similar behavior to Fig. 11(c), and the normalized viscosity can decrease by more

than an order of magnitude (from 1 to 0.1).

Measurements of the surface S, differentiable velocity fields u, and the stress σ allow us

to investigate whether a local decrease in viscosity modifies the cost of swimming. We

compute both the mechanical power of the swimmer (P, Eq. 3.5) and the rate of viscous

dissipation in the fluid (Φ, Eq. 3.10). This allows for a interesting comparison between

different methods of computing the mechanical power of swimming organisms at low

Re from experimental data. We note that particle tracking techniques can only resolve

velocity fields and shear rates 40 µm from the boundary of the swimmer. Our calculation

of drag force and power (Eq. 3.5) are therefore somewhat hindered by our ability to make

measurements close to the swimmer. We then compare our estimations of power from

experimental data to recent theoretical (Vélez-Cordero and Lauga, 2013) and numerical

results (Li and Ardekani, 2015).

Results for both mechanical power and viscous dissipation rate are shown in Fig. 12.

38



Figure 12: (a) Cost of swimming as a function of zero-shear viscosity η0 using each side of
Eq. 3.9. For Newtonian fluids: mechanical power (�, from Sznitman et al. (2010b)), viscous
dissipation rate (D, buffer only), and the scaling P ∼ ηU2 (solid line) calculated from our
kinematics data (Gagnon et al., 2014a). For shear-thinning fluids: mechanical power (◦),
viscous dissipation rate (M), and the scalings P ∼ η0U2 (dash-dot line) and P ∼ ηeffU2

(dashed line). (b) Mechanical power and viscous dissipation rate replotted versus effective
viscosity ηeff.

The calculation of mechanical power P (Eq. 3.5) as a function of zero-shear-viscosity η0

is shown for several shear-thinning fluids (◦) and Newtonian solutions (�). Also shown is

the viscous dissipation rate Φ (Eq. 3.10) for the same shear-thinning fluids (M) as well as a

Newtonian buffer solution (D). Results from the measurement of mechanical power and

viscous dissipation rate show quite reasonable agreement, and suggest that both methods

can be used to estimate the cost of swimming of low-Re organisms.

The data presented in Fig. 12(a) show that the estimated mechanical power increases lin-

early with fluids viscosity for C. elegans swimming in Newtonian fluids. A deviation from

this linear behavior is found for high viscosity fluids because the nematode is power-

limited (Shen and Arratia, 2011); this deviation starts for fluid viscosities greater than

approximately 30 mPa·s. For nematodes swimming in Newtonian fluids, we expect the

mechanical power to scale as P ∼ ηU2, where U is the swimming speed of the nematode;

the black line shows this scaling using our previously obtained experimentally-measured
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kinematics (in Newtonian fluids) to provide values of U for a range of fluid viscosities

(Shen and Arratia, 2011; Gagnon et al., 2014a). This scaling indicates that power should

increase linearly with viscosity and indeed the calculation of mechanical power in New-

tonian fluids supports this linearity. This indicates that the nematode’s kinematics (i.e.

swimming speed) are largely insensitive to changes in viscosity for η < 30 Pa·s (Sznitman

et al., 2010b). For larger values of η, however, our data show a deviation from a linear

scaling for P ∼ ηU2 because the nematode is power-limited.

For shear-thinning fluids, the mechanical power at low viscosity also increases linearly

with increasing zero-shear viscosity. At moderate to large viscosities (& 30 mPa·s), me-

chanical power increases sub-linearly with zero-shear viscosity (η0). In order to interpret

these data, Fig. 12(a) also shows two scalings for shear-thinning fluids generated from our

experimentally-measured kinematics in shear-thinning fluids. The first scaling (P ∼ η0U2),

shown as a dash-dot line. This curve is essentially a continuation of the linear scaling ob-

served at low viscosities in Newtonian fluids. The second scaling (P ∼ ηeffU2), shown

as a dashed line, appears to captures the sub-linearity of our mechanical power calcula-

tions; the value of ηeff is defined as the average viscosity over the range of characteristic

shear rates produced by the organism (Gagnon et al., 2014a). Figure 12(b) evaluates the

robustness of this scaling; here, the mechanical power and viscous dissipation measure-

ments are shown versus effective viscosity (ηeff) and compared with the Newtonian scal-

ing P ∼ ηU2, which remains unchanged. The data collapses onto the Newtonian scaling,

suggesting that an organism’s cost of swimming in a generalized Newtonian fluid is rea-

sonably well-predicted by estimating a fluid’s effective viscosity for a given swimming

gait. This confirms a previous hypothesis made from the kinematics of C. elegans as a

function of effective viscosity (Gagnon et al., 2014a; Gagnon and Arratia, 2016).

Previous work on undulatory swimming in shear-thinning fluids, however, generally com-

pares mechanical power to the equivalent Newtonian power, defined as PN = P(η0),
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and broadly predicts that shear-thinning viscosity decreases the cost of swimming (Vélez-

Cordero and Lauga, 2013; Li and Ardekani, 2015). Since a shear-thinning fluid’s effec-

tive viscosity must always be less than or equal to its zero-shear viscosity, our findings

in Fig. 12(a) suggest agreement. However, these theoretical (Vélez-Cordero and Lauga,

2013) and numerical (Li and Ardekani, 2015) studies also suggest theoretical scalings us-

ing the Carreau-Yasuda model (Eq. 3.1) for mechanical power relative to the Newtonian

case P/PN . While the work of Vélez-Cordero and Lauga (2013) uses a small-amplitude

approximation and diverges at high Carreau number Crk, Li and Ardekani (2015) have

recently extended this scaling to large amplitudes:

P/PN = 1− (1− η∞/η0)

(
1−

(
1 + Cr2

k

)(n−1)/2
)

. (3.11)

We note that Li and Ardekani (2015) multiply the square of the kinematic Carreau num-

ber Crk by the constant 3/8, such that the first term of the Taylor expansion of Eq. 3.11

matches the theoretical power of small amplitude undulatory sheet in a generalized New-

tonian fluid (Vélez-Cordero and Lauga, 2013; Li and Ardekani, 2015). Since we are not per-

forming an expansion of this equation and are instead inserting experimentally-measured

swimming kinematics and fluid rheology, we take this constant to be one in our experi-

mental system.

This theoretical scaling for relative power (Eq. 3.10) now gives us a method for making

a quantitative comparison between the proposed scaling and the methods for estimating

mechanical power from Eq. 3.9. By using our rheology data (Fig. 6) and kinematics data

(Gagnon et al., 2014a), we can estimate η∞/η0 and directly compute Crk to obtain an ap-

proximation of normalized power P/PN . We show this experimental estimate of P/PN as

a function of Crk in Fig. 13 alongside our measurements of mechanical power using both

methods discussed above, (i) mechanical power (P, ◦) and (ii) viscous dissipation rate (Φ,

MMM). We note that we do not observe a strongly power-limited regime for C. elegans swim-
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Figure 13: Normalized mechanical power (◦) and viscous dissipation rate (MMM) as a function
of Crk; the dashed line represents the Newtonian case. The transition from P/PN ≈ 1 to
P/PN < 1 occurs at Crk = O(1). The solid black line is the theoretical scaling generated
from our rheology and kinematics data, given by Eq. (3.11) (Li and Ardekani, 2015).

ming in shear-thinning fluids, though we observe some deviations from a linear scaling for

Newtonian fluids; it is in such regime that one would expect significant deviations from

the theoretical calculations, which assume the swimmer to have infinite power.

We find good agreement among between our calculations and the theoretical scaling based

on our kinematics and rheology data: at Crk ∼ O(1), the cost of swimming in shear-

thinning fluids transitions from P/PN ≈ 1 to P/PN < 1. Indeed, we now gain considerable

confidence in predicting the cost of swimming using only rheology (η0, η∞, and λCr) and

simple kinematics (A, f , and k).

It follows that we can hypothesize the cost of transport for an undulatory swimmer in

a generalized Newtonian fluid. For example, in a shear-thickening fluid with the same

constitutive model (Eq. 3.1) but now with a power law index n > 1 and η0 < η∞, we

predict that a nematode would require more power compared to a Newtonian fluid of

the same zero-shear viscosity. Additionally, when scaled by effective viscosity, we expect
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the cost of swimming in a shear-thickening fluid to collapse onto the Newtonian scaling,

similar to our shear-thinning data in Fig. 12(b).
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CHAPTER 4 : Swimming in concentrated, structured fluids

Many fluids of practical interest contain solids and/or polymers which form structures at

an intermediate scale between the size of a molecule and the macroscopic length scale of

the system (Larson, 1999). Such “complex fluids” often display non-Newtonian rheologi-

cal behavior including shear-thinning viscosity and viscoelasticity. The interplay between

the fluid’s internal structure (e.g. polymer networks) and self-propulsion is critical to many

biological processes such as reproduction (Guzick et al., 2001), bacterial infection (Josen-

hans and Suerbaum, 2002), and bio-degradation in soil (Alexander, 1991). For example,

the bacteria H. pylori can modulate the acidity of gastric mucus and thus untangle glycol-

protein networks, reducing the resistance of mucus (Celli et al., 2009), and nematodes can

burrow through the networks present in wet soil aiding in soil aeration, water storage,

and soil fertility (Juarez et al., 2010; Jung, 2010). Understanding swimming in complex

fluidic environments is thus pertinent to the treatment of human diseases as well as the

characterization and maintenance of ecological systems.

Experimental observations have revealed that polymer networks can enhance the swim-

ming speed of flagellated bacteria moving in solutions containing long-chain polymer

molecules (Berg and Turner, 1979; Schneider and Doetsch, 1974). For these small organ-

isms (L < 10 µm), it has been argued that the main mechanism for this propulsion en-

hancement is due to the benefits of pushing against a quasi-rigid polymer network (Berg

and Turner, 1979; Magariyama and Kudo, 2002). The role of the mechanical properties of

fluid internal networks on an organism’s swimming behavior has also been investigated

in numerical (Fu et al., 2010; Du et al., 2012; Magariyama and Kudo, 2002; Nakamura

et al., 2006) and theoretical (Leshansky, 2009) studies. Numerical studies of swimming

in fluids structured with polymer networks resembling natural environments have postu-

lated that the shapes and dynamics of internal networks are accounted for by two effective

anisotropic viscosities (Magariyama and Kudo, 2002; Nakamura et al., 2006), which qual-
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Figure 14: (a) Schematic of nematode C. elegans swimming in a sealed fluidic chamber.
(b) Nematode’s centerline and body curvature during swimming. Curvature plot for ap-
proximately 3 beating cycles reveals traveling wave propagating from head to tail. Wave
speed illustrated by the white dashed line with arrow indicating the direction. (c, d) Flow
streamlines color-coded by normalized velocity magnitude during swimming for 2000
ppm (semi-dilute) and 4000 ppm (concentrated) cases. The red box highlights a region
of high relative flow in the concentrated regimes; inset defines normal and tangential com-
ponents relative to the worm body.
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itatively explain some of the observed propulsion enhancement (Berg and Turner, 1979;

Schneider and Doetsch, 1974). Such anisotropic viscosities, however, are difficult to mea-

sure and apply to quantitative analysis. In heterogeneous, gel-like environments, modeled

by embedding stationary objects in an incompressible viscous fluid, the swimming speed

of a microorganism can be enhanced by the underlying structures in the fluid (Leshansky,

2009). For internal networks made of small molecules, such as a binary blend of two in-

termixed fluids, a two-fluid model predicts an enhancement in swimming speed for stiff

and compressible networks (Fu et al., 2010), and a reduction in swimming speed when

local distributions of volume fractions of the two phases scale differently for thrust and

drag (Du et al., 2012). Overall, the observed propulsion speed variations in these studies

underscore the important role of the fluid structures on the swimming behavior of mi-

croorganisms.

In this manuscript, we investigate the effects of polymer networks on the swimming dy-

namics of the nematode Caenorhabditis elegans in experiments using tracking and velocime-

try methods. Polymer networks are formed by controlling the concentration of the bio-

compatible rod-like polymer xanthan gum in water. We find an enhancement of approxi-

mately 65% in the nematode’s swimming speed in concentrated polymeric solutions com-

pared to semi-dilute solutions. Due to the relatively large size of the nematode (L ≈ 1 mm)

compared to the polymer networks (∼ 10 µm), the mechanism of pushing against a quasi-

static polymer network is insufficient to explain the increase in swimming speed. We argue

that the propulsion enhancement arises from local shear-induced anisotropy.

4.1. Experimental Methods

Experiments are performed in an acrylic fluidic chamber (Fig. 14(a)) that is 20 mm wide,

40 mm long and 1.6 mm deep. All experiments are performed with wild-type, adult C.

elegans that are on the average 1 mm in length and 80 µm in diameter. The nematodes
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swimming motion is imaged using a microscope with a depth of field of 30 µm and a fast

camera operated at 100 frames per seconds in order to accurately resolve small body dis-

placements. To minimize boundary effects from the top and bottom walls, the imaging

plane is focused at the center of the chamber. All data presented here pertain to nema-

todes swimming at the center plane of the fluidic channel. Out-of-plane recordings are

discarded. An average of 15 nematodes are recorded for each experiment.

Figure 14(a) shows a sample snapshot of a nematode swimming in the water-like buffer

solution M9. Here, swimming speed U is calculated by differentiating the nematode’s

centroid position over time; we find U ≈ 0.35 mm/s for nematodes swimming in M9 so-

lutions. The nematode’s Reynolds number Re = ρUL/µ ≈ 0.2, where L is the nematode’s

length (1 mm), ρ is fluid density, and µ is the fluid viscosity (1 mPa·s). The nematode’s

shape-line in each frame is extracted by in-house software (Krajacic et al., 2012) to calcu-

late the nematode’s body curvature, defined as κ = dφ/ds. Here, φ is the angle made by

the tangent to the x-axis in the laboratory frame at each point along the body centerline,

and s is the arc length coordinate from the head of the nematode (s = 0) to its tail (s = L).

Fig. 14(b) shows the spatio-temporal evolution of the nematode’s body curvature κ(s, t) for

approximately three swimming cycles. This curvature plot shows the existence of periodic,

well-defined, and diagonally oriented lines characteristic of bending waves propagating in

time along the nematode body length, from which important kinematic quantities such as

beating frequency f and wave-speed νp are obtained (Sznitman et al., 2010b); wave-speed

is illustrated using a white dashed line with an arrow indicating the direction of waves in

Fig. 14(b). We find that f ≈ 2 Hz and νp = 5 mm/s for nematodes swimming in M9 buffer

solution.

Polymeric fluids are prepared by adding small amounts of xanthan gum (XG) to deionized

water. Xanthan gum is a semi-rigid rod-like polymer with a molecular weight of 2× 106

Da (Sigma Aldrich, G1253). Polymer concentration ranges from 300 ppm to 5000 ppm by
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Figure 15: (a) Shear viscosity of xanthan gum solutions showing power law behavior. (b)
Stress relaxation data for XG solutions fit to a linear viscoelastic model. (c) Relaxation
time λ, (d) viscosity factor µ0, and (e) power law index n as a function of concentration.
Two different trends for µ0 and n indicate the structural transition of solutions from the
semi-dilute to concentrated regime.

weight. The rheological properties of all polymeric solutions are characterized by a stress-

controlled rheometer (RFS3, TA Instruments). Fig. 15(a) shows the shear viscosity µ of all

fluids as a function of shear rate γ̇. All fluids exhibit shear-thinning viscosity with the

exception of M9 buffer solution which exhibits water-like behavior. This non-Newtonian

viscosity behavior is well captured by an empirical power law fluid model of the type

µ = µ0|γ̇|n−1, where µ0 is the viscosity factor and n is the power law index.

Fluid relaxation times are obtained by fitting the stress relaxation data with the gener-

alized linear viscoelastic model of a single relaxation time of the type G(t) = G0e−t/λ,

where G(t) is the fluid shear modulus and λ is the longest relaxation time of the fluid. Fig-

ure 15(b) shows the data and a sample fitting and the values of λ are shown in Fig. 15(c).

Figure 15(d) shows the values of µ0 as a function of XG polymer concentration. The dif-

ferent slopes found in Fig. 15(d) represent two distinct polymer concentration regimes,
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namely the semi-dilute and concentrated regimes. The transition from the semi-dilute to

the concentrated regime seems to happen near or around 3000 ppm and it is commonly

interpreted as a structural transition (Rodd et al., 2000; Doi and Edwards, 1988). In con-

centrated solution, the shape and dynamic properties of polymer networks dominate flow

behaviors; in semi-dilute solution, the hydrodynamic interactions among individual poly-

mers dominate flow behaviors (Doi and Edwards, 1988). We note that the power law index

n of xanthan gum solutions also shows two regimes (Fig. 15(e)) due to the aforementioned

structural transition (Wyatt and Liberatore, 2009). We note that there is no expectation

for concentration transition to be reflected by the change in slope of relaxation time λ in

Fig. 15(c).

Particle tracking methods are used to measure the velocity fields generated by the nema-

todes swimming in the various polymeric fluids. Figure 14(c) and (d) show normalized

velocity fields for C. elegans swimming in semi-dilute (2000 ppm) and concentrated (4000

ppm) XG solutions. Velocities for each solution are normalized by their respective root-

mean-square velocities and then scaled by the maximum between the two regimes. These

normalized streamlines are color-coded to highlight regions of high (red) and low (blue)

flow. We find large recirculating regions around the nematode’s body and regions with

large extensional (or straining) components. The flow structures are relatively similar for

both cases, but we find differences around the nematode’s midsection, where relative ve-

locities in the concentrated case are nearly twice as large as those in the semi-dilute case

and are predominately in the normal direction. We will discuss this feature later in the

manuscript.

4.2. Polymer Concentration Effects

We begin by analyzing the swimming kinematics of C. elegans in XG solutions as a func-

tion of polymer concentration. Figures 16(a)-(c) show the nematode’s beating frequency

f , wave speed νp, and swimming speed U as a function of concentration, respectively. As
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the polymer concentration increases, we find a gradual and monotonic decay in the ne-

matode’s wave speed νp and a decay in beating frequency f below 3000 ppm followed by

a plateau at higher concentrations (Fig. 16(a) and (b) respectively). This decrease in such

kinematic functions is expected as a result of increased viscosity as polymer concentration

increases (Fig. 15(d)).

Figure 16(c) shows that the nematode’s swimming speed U remains relatively constant

for polymer concentrations below 3000 ppm. Surprisingly, however, we find a sudden

increase in U for concentrations above 3000 ppm. The values of U are maintained around

0.15 mm/s in semi-dilute solutions but they quickly rise by 65% to about 0.25 mm/s in

concentrated solutions despite a significant increase in solution viscosity. As expected, the

swimming speed ultimately decreases as the concentration is further increased due to the

nematode’s finite power output (Shen and Arratia, 2011). An increase in U with viscosity

has been previously reported for microorganisms moving in structured gel-like media,

but the mechanisms are still not well understood (Berg and Turner, 1979; Schneider and

Doetsch, 1974). A recent theoretical work suggests that such increase may be due to the

presence of polymer networks in the media and that microorganisms may be able to push

against such quasi-static networks and move more efficiently (Magariyama and Kudo,

2002). However, because of the large difference in length scales between the nematode (≈

1 mm) and the polymer networks (≈ 10 µm) as well as the lack of quasi-static flow fields in

the concentrated regime (Fig. 14(d)), this notion does not adequately explain the observed

propulsion enhancement. In what follows, we will show that the propulsion enhancement

for C. elegans swimming in concentrated polymer solutions is related to shear-induced

fluid anisotropy.

4.3. Swimming Speed & Fluid Rheology

To better understand the mechanisms governing of this unusual enhancement in U, we

investigate the effects of both fluid viscosity and elasticity on the nematode’s swimming
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Figure 16: (a, b) Swimming frequency f and wave speed νp as a function of concentration.
(c) Swimming speed as a function of concentration. Swimming speed exhibits a rapid
increase as the solution enters the concentrated regime.

speed. Figure 17(a) and (b) show the values of U as a function of fluid viscosity coeffi-

cient µ0 and power law index n. Note that the transition from semi-dilute to concentrated

regime in the XG solutions occurs at µ0 ≈ 1 Pa·s and n ≈ 0.3, as shown in Fig. 15(d) and

(e). Results show that the nematode is able to maintain a constant swimming speed (≈

0.15 mm/s) for µ0 . 1 Pa·s but exhibits a rapid increase to U ≈ 0.25 mm/s for µ0 & 1 Pa·s

(Fig. 17(a)). This corresponds to an increase in swimming speed of about 65% as the fluid

viscosity increases. As expected, further increase in viscosity beyond ≈ 2 Pa·s reduces

swimming speed, which suggests that the enhancement in swimming speed is bounded

by the nematode’s limited power output (Shen and Arratia, 2011). The effects of shear thin-

ning on the nematode’s swimming speed (Fig. 17(b)) echo the similar pattern found with

µ0. That is, the swimming speed is abruptly enhanced for XG solutions corresponding to

n & 0.3; below such value, the nematode’s swimming speed remains relatively constant.

Due to the relatively high polymer concentration and the formation of polymer networks,

viscoelastic effects are expected in semi-dilute and concentrated XG solutions. Fluid elas-

ticity is known to strongly affect the swimming behavior of microorganisms (Fu et al.,

2009; Lauga and Powers, 2009; Shen and Arratia, 2011). For the case of C. elegans, it has
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Figure 17: (Color Online) Nematode’s swimming speed as a function of (a) viscosity factor,
(b) power law index, (c) and Deborah number or fluid elasticity (see text).

been recently shown the swimming speed decreases as fluid elasticity increases in dilute

solutions (Shen and Arratia, 2011). Viscoelastic effects are best investigated by introduc-

ing the Deborah number, defined as De = λ f , where λ is the fluid relaxation time and

f is the nematode’s beating frequency. The Deborah number represents the ratio of the

time-scale of the fluid “fading memory” to the period of flow induced during undulatory

swimming (Lauga and Powers, 2009). Note that λ = 0 for Newtonian fluids and De → ∞

for an elastic solid. Figure 17(c) shows the nematode’s swimming speed as a function of

De. We find that the rapid increase in the nematode’s swimming speed is not determined

by De (or fluid elasticity) but rather the transition from semi-dilute to concentrated fluid

structure.

4.4. Discussion

Our data show a rapid increase in the swimming speed of C. elegans as the XG polymer con-

centration increases beyond 3000 ppm, which roughly corresponds to the transition from

the solution semi-dilute to the concentrated regime. The main bulk rheological parame-

ters such as viscosity factor µ0, power law index n, and fluid relaxation time (elasticity) λ

do not fully capture the observed phenomenon. This suggests that the polymer networks

present in the concentrated polymeric fluids may be responsible for this enhancement in

propulsion speed.
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In order to identify the mechanism behind the enhancement of swimming speed, we exam-

ine the normalized flow field streamlines shown in Fig. 14(c) and (d) for nematodes swim-

ming in semi-dilute (2000 ppm) and concentrated (4000 ppm) XG solutions. Both fields

possess the similar flow structures. However, in the concentrated regime, we find a region

of high relative velocity that is predominantly oriented normal to the nematode’s body,

whereas in the semi-dilute regime, this region is absent. Note that simply modulating

fluid viscosity would uniformly change velocities in the field in all directions; that is, the

velocity fields would scale linearly with viscosity. This is clearly not that case in the con-

centrated regime, as the velocities normal to the nematode’s mid section are larger relative

to the tangential velocities. This indicates a more complex relationship between the swim-

mer and the networks in the polymer solution. As discussed earlier (see Fig. 15(d) and (e)),

the fluid internal structure is sensitive to polymer concentration, particularly as the XG

concentration increases from the semi-dilute to the concentrated regime (Rodd et al., 2000;

Doi and Edwards, 1988). Our results indicates that the flow behavior of semi-dilute XG

solutions is dominated by the hydrodynamic interaction among polymer molecules, while

the flow behavior of concentrated solutions is dominated by molecule shape and dynamic

properties of the polymer networks (Doi and Edwards, 1988).

We quantify the observed differences in the flow field by computing the probability distri-

bution function (PDF) of the tracer particle velocities embedded in the flow. PDF plots are

shown in Fig. 18(a) and (b) for a semi-dilute (2000 ppm) and a concentrated (4000 ppm)

XG solution, respectively. The PDFs are decomposed into tangential and normal direc-

tions, which are computed with respect to the nematode’s swimming direction. Here, the

tangential direction corresponds to the nematode’s swimming direction while the normal

direction is perpendicular to the swimming direction. The area around the PDF’s central

peak, where velocity magnitudes |v| are small, isotropic, and dominated by noise, repre-

sents the flow field far away from the swimming C. elegans. The measurements of interest

are at the PDF’s tails, which correspond to regions of the flow field close to the nematode.
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Near the nematode’s body, the velocity distributions exhibit exponential decay tails, in-

dicating the dominant role of convection arising from the swimming motion. The solid

lines represent an exponential fit of the decay tails of the form P(v) = P(v)0 + AeB v
vmax ,

where P(v) is the probability density function (PDF) of velocity, v and vmax are the tracer

particles’ speed and maximum speed in the flow field, A is a fitting coefficient, and B is the

decay slope. Results show that in the semi-dilute solution, both the normal and tangential

velocity components show roughly the same decay slope: B = −7.76, − 7.07 respectively.

A different trend, however, is found for the velocity distribution in concentrated solutions.

While both tangential and normal components show exponential tails near the nematode’s

body (high velocities), we note an anisotropic distribution the decay rates of velocity com-

ponents. The decay slopes for the tangential and normal directions are B = −9.82, − 5.85

respectively, indicating velocities in the tangential direction decay faster at high velocities

than those in the normal direction. This implies that for nematodes swimming in con-

centrated XG solution, there are regions where the fluid has a relative enhancement in

momentum in the normal direction. At low Reynolds number, where fluid momentum is

instantaneously dissipated, higher fluid speed and momentum along the normal direction

require stronger driving force from the swimmer. Consequently, the nematode experiences

an enhanced drag in the normal direction. Our data suggest that the nematode’s motion is

causing an anisotropic mechanical response in the fluid (in concentrated solutions), which

enhances the normal viscous drag on the nematode and leads to the nematode’s swimming

speed enhancement.

Next, we examine the physical properties of the XG solutions in the semi-dilute and con-

centrated regimes. As mentioned before, XG is a semi-rigid, rod-like polymer, which has

a molecular weight (MW) of approximately 2 × 106, a hydrodynamic length of approx-

imately 1.5 µm and a contour length of approximately 2.0 µm (Zirnsak et al., 1999). At

equilibrium, it has been established that for semi-rigid rod-like polymers, the fluid struc-

ture can transition from an isotropic fluid to an anisotropic nematic liquid crystal as the
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polymer concentration increases in the solvent (Tracy and Pecora, 1992; Lim et al., 1984).

This transition occurs in the concentration regime 4(MW)
NAd`2 . c . 6(MW)

NAd`2 , where d and ` are

the diameter and hydrodynamic length of the xanthan gum macromolecule respectively,

MW is its molecular weight, NA is Avogadro’s number, and c is the polymer concentra-

tion (Tracy and Pecora, 1992). Here, d ≈ 2 nm, ` ≈ 1.5 µm, and MW ≈ 2× 106 Da. For the

xanthan gum solutions investigated here, this corresponds to a transition between concen-

trations of approximately 2900 and 4400 ppm. It is between these concentrations that we

observe changes in the viscosity coefficient and power law index trends (Fig. 15(d) and (e))

and in the nematode’s swimming speed (Fig. 16(c)). It is believed that this transition oc-

curs because these slender macromolecules can no longer freely rotate; rather, their inter-

actions are becoming increasingly confined and crowded by adjacent molecules. As the

molecules become more crowded, the parallel component of the molecule’s diffusion co-

efficient D‖ becomes much greater than its perpendicular component D⊥ because these

rod-like molecules are more prone to slide past each other than to rotate (Dobrynin et al.,

1995).

The nematode’s motion, however, disrupts the aforementioned equilibrium picture by in-

troducing shear stresses to the system. The introduction of shear stresses in a rod-like

polymeric solutions (e.g. XG fluids) causes molecules to align with the direction of shear

due to their anisotropic drag (Song et al., 2006; Zirnsak et al., 1999); that is, a rod-like

molecule moves more easily along its length than normal to it. This alignment gives rise to

the shear thinning viscosity behavior of XG solutions (Fig. 15(a)). The shear stresses intro-

duced in the fluid by the nematode are also able to align these molecules, at least locally,

and can lead to the formation of local nematic structures at high concentrations (Dobrynin

et al., 1995). The combination of these local nematic structures with the anisotropic dif-

fusivity present only in the concentrated regime gives rise to the enhanced drag in the

normal direction experienced by the nematode (Fig. 18(b)).

55



Figure 18: (Color Online) Probability distribution functions (PDF) of velocity components
of tracer particles in (a) semi-dilute and (b) concentrated solutions. PDFs are computed at
the same phase and are normalized by the total number of particles in the flow field. The
blue circles (◦) and red triangles (4) represent the tangential and normal components of
the velocity vectors with fitted exponential decay slopes. Inset: a schematic of nematode’s
velocity components. (c) The effective drag coefficient ratios Cn/Ct, e f f for semi-dilute
(blue circles) and concentrated (red triangles) solutions. Inset: an illustration of drag coef-
ficients for a slender cylinder.

In order to elucidate the mechanism discussed above, i.e. the relative enhancement in

drag in the normal direction, we estimate the drag coefficient ratio Cn/Ct using resistive

force theory (RFT) (Gray and Hancock, 1955) along with our kinematic data. We note that

RFT is only valid for Newtonian fluids and its used here is solely to illustrate a possible

mechanism. The ratio of the nematode’s length (≈ 1 mm) to its diameter (≈ 80 µm) is

approximately 12. Hence, in the limit of low Re, C. elegans may be treated as a slender

body moving in a viscous fluid. An expression for the swimming speed U for an un-

dulating filament was proposed by Gray and Hancock (Gray and Hancock, 1955) and is

given as U = 2π2
(

f 2 A2

νp

) (
Cn
Ct
− 1
)

where νp, A, and f are the wave speed, beating ampli-

tude, and frequency respectively. The quantity Cn/Ct is the drag coefficient ratio where Cn

and Ct are normal and tangential drag coefficients (Gray and Hancock, 1955). The pres-

ence of polymer networks in the fluid can affect this drag coefficient ratio (Francois et al.,

2008), and we use the above expression to approximate an effective drag coefficient ratio,

Cn/Ct, e f f . While these estimates cannot be quantitatively compared to those for a Newto-

56



nian fluid, they can provide valuable insight into the degree of anisotropy present in the

fluid micro-structure.

Figure 18(c) shows the ratio Cn/Ct, e f f as a function of XG concentration estimated by in-

corporating experimentally measured kinematics (i.e. U, νp, A, and f ) (Gray and Hancock,

1955). We find a rapid increase in Cn/Ct, e f f as the polymer concentration increases beyond

3000 ppm, where the solutions transition from the semi-dilute to the concentrated regime

(Fig. 15(d) and (e)). This suggests a relative increase of Cn compared to Ct for polymer con-

centration > 3000 ppm. This relative enhancement in the normal component of the drag

coefficient Cn is corroborated by measurements of the velocity fields (Fig. 14(c) and (d))

and the PDFs of their velocity distributions (Fig. 18(a) and (b)).
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CHAPTER 5 : Swimming in viscoelastic fluids under confinement

By introducing a far-field no-slip boundary condition, one can mimic natural biological

processes such as bacteria moving through vesicles in the circulatory system and sperm

cells swimming through millimeter-scale fallopian tubes (Colburn, 1986); both of these

systems contain non-Newtonian fluids (blood and mucus, respectively). Building off our

above argument that non-Newtonian fluids are the most appropriate model system for

studying biological locomotion, we believe a necessary component of studying low Reynolds

number swimmers is a systematic experimental investigation of swimming under confine-

ment in non-Newtonian fluids.

An analytical study (Katz, 2003) and a numerical computation (Münch et al., 2016) using

an infinite waving sheet in the presence of solid boundaries have proposed that an un-

dulatory swimmer should swim faster under confinement in a Newtonian fluid. Several

studies have shown that hydrodynamic wall interactions can also lead to aggregation in

Newtonian fluids (Li and Ardekani, 2014), and modified aggregation in viscoelastic flu-

ids (Yazdi et al., 2014, 2015). Additionally, work with C. elegans has shown that the pres-

ence of solid boundaries can lead to a modulated swimming gait, particularly a decrease

in amplitude in Newtonian fluids (Schulman et al., 2014). However, there is a lack of ex-

perimental data on the combined effects of viscoelasticity and confinement on swimming

behavior. We therefore combine effects of confinement and fluids with viscoelastic and

shear-thinning rheology and examine their fundamental effects on the kinematics of an

undulatory swimmer. For C. elegans swimming through a thin channel, as the walls of the

channel approach the characteristic transverse length-scale of the nematode’s swimming

gate, defined as the head amplitude, we expect modifications of the flow field around

the swimmer, which in turn will modify fluid stresses and simultaneously the nematode’s

swimming behavior.
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Figure 19: (a) Schematic of confinement channel geometry. (b) Nematode body shapes dur-
ing one beating cycle in a viscosified Newtonian fluid under confinement. (c) Nematode
body shapes during one beating cycle in a viscoelastic fluid under confinement.

5.1. Experimental Methods

Swimming experiments in Newtonian and non-Newtonian fluids are performed using the

nematode C. elegans. These nematodes are characterized by a relatively long and quasi-

cylindrical body shape and are approximately 1 mm in length and 80 µm in diameter; their

genome has been completely sequenced (Brenner, 1974) and a complete cell lineage has

been established (Byerly et al., 1976). C. elegans are equipped with 95 muscle cells that are

highly similar in both anatomy and molecular makeup to vertebrate skeletal muscle (White

et al., 1986). Their neuromuscular system controls their body undulations, allowing C.

elegans to swim, dig, and crawl through diverse environments. The wealth of biological

knowledge accumulated to date makes C. elegans an ideal candidate for investigations that

combine aspects of biology, biomechanics, and the fluid mechanics of propulsion.

Experiments are performed in thin, fluid-filled acrylic channels 30 mm long and 1.6 mm

deep covered by a thin, glass microscope cover slip (Fig. 19(a)). The width of the channels
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ranges from 1.0 mm to 1.8 mm. The smallest channel width is set by the maximum ampli-

tude of the nematode, which is approximately 0.25 mm, such that there is no direct contact

with the wall. Additionally, free swimming experiments are performed where the nema-

todes are laterally unrestricted. Ideal recordings are of the nematode swimming parallel

to the channel walls and in the geometric center of the channel. Consequently, recordings

where the nematode directly interacts with the wall or where the nematode swims at an

angle with the wall greater than 15 degrees are also discarded. On average, 17 individuals

are recorded for each combination of fluid and channel width.

We image their swimming motion using standard bright-field microscopy (Infinity K2/SC

microscope with an in-system amplifier, a CF-3 objective, and an IO Industries Flare M180

camera at 150 frames per second). The depth of focus of the objective is approximately

20 µm and the focal plane is set on the longitudinal axis of the nematode body. The ne-

matode beats primarily in the observation plane; the out-of-plane beating amplitude of C.

elegans is less than 6% of the amplitude of its in-plane motion (Sznitman et al., 2010b). All

data presented here pertain to nematodes swimming at the center of the fluidic chamber

and out-of-plane recordings are discarded to avoid nematode-wall interactions.

5.1.1. Swimming kinematics

The nematode’s swimming kinematics are obtained from videos using in-house software

(Sznitman et al., 2010c). The software extracts the nematode’s centroid position and body

shape-line, and computes quantities such as swimming speed U and body curvature κ.

Swimming speed is obtained by differentiating the nematode’s centroid position with time,

and we define the positive y-axis as the swimming direction. The body curvature is de-

fined as κ = δφ/δs, where φ is the angle between a fixed reference axis and the tangent to

the body shape-line, at each point s along the body contour, where s is an arc length pa-

rameterization. The evolution of κ(s, t) over many beating cycles reveals periodic lines that

propagate in time from head (s = 0) to tail (s = L), illustrating the characteristic traveling
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wave of undulatory swimming (Sznitman et al., 2010b; Gagnon et al., 2013). The slope and

rate of occurrence of these lines represent wave speed c and beating frequency f , respec-

tively. In water-like buffer solutions, we find U ≈ 0.35 mm/s, f ≈ 2 Hz, and c ≈ 5 mm/s.

The Reynolds number, defined as Re = ρUL/η, is approximately 0.35, where L is the ne-

matode’s length (1 mm), ρ is the fluid’s density (103 kg/m3), and η is the fluid’s viscosity

(1 mPa·s), indicating that viscous forces dominate the flow.

5.1.2. Particle tracking

We measure the velocity fields generated by swimming C. elegans in both Newtonian and

non-Newtonian fluids by seeding the working fluids with 3.1 µm polystyrene tracer par-

ticles, which are tracked continuously for the entire duration of the experiment using in-

house codes. These tracer particles are dilute (< 0.5% by volume) and do not alter the

properties of the fluid. We image the nematodes swimming through this seeded fluid for 6

to 10 cycles, with each swimming cycle (or period) containing 60 phases. Because C. elegans

beat at a constant frequency, we can phase-average the data and obtain spatially resolved

velocity fields. We note that data points for each phase are averaged into gridded spaces

of size 20 µm. We estimate the full 3D shear rate tensor by applying a correction factor de-

veloped expressly to estimate the errors present in planar particle tracking data; without

this correction factor, we would underestimate the shear rate magnitude and therefore the

strength of viscoelastic effects (Montenegro-Johnson et al., 2016).

5.1.3. Fluid Properties

The viscoelastic fluids were made by adding carboxymethylcellulose sodium salt (CMC) to

water (Sigma-Aldrich C5678). CMC is a flexible, long-polymer with fluid relaxation times

λ of 0.8 and 2.3 at concentrations of 3000 and 5000 ppm by weight, respectively (Shen

and Arratia, 2011). These times were calculated by measuring the fluid shear modulus

G(t) over time and fitting the data to the generalized linear elastic model of the form
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Figure 20: (a) Swimming speed U, (b) amplitude A, (c) curvature κ, and (d) Strouhal num-
ber St for viscosity Newtonian solution (black circles), 3000 ppm CMC viscoelastic solu-
tion (red triangles), and 5000 ppm CMC viscoelastic solution (blue squares) as a function
of channel width and therefore confinement.

G(t) = G0e−t/λ. These fluids have effective viscosities of 100 mPa·s and 400 mPa·s for

the 3000 ppm and 5000 ppm version respectively. At these dilute concentrations, the

shear-thinning effects in the CMC are negligible (Benchabane and Bekkour, 2008). Lastly, a

viscosity-matched aqueous Ficoll PM 400 solution with a concentration of 23% by weight

was prepared as a Newtonian buffer solution, which has a viscosity µ of approximately 50

mPa·s, similar to the viscosity of the 3000 ppm CMC solutions (Sigma-Aldrich F4375).

5.2. Experimental Results

The presence of viscoelasticity substantially modifies the body shape of C. elegans under

confinement. Figure 19(a) and (b) show the body shapes over one cycle for a nematode

swimming through a 1.3 mm channel in a Newtonian and viscoelastic fluid respectively.

The shape of the worm’s body in the viscoelastic case suggests a larger amplitude and

body curvature. We therefore begin by quantifying the kinematics of swimming C. elegans

in both Newtonian and viscolelastic fluids under confinement conditions ranging from

free-swimming to swimming through channels approximately equal to the length of the

nematode.
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Figure 21: (a) The Strouhal number St = f A/U with decreasing channel width (b) The es-
timated drag coefficient ratio CN/CT for Newtonian fluids with decreasing channel width.

5.2.1. Kinematics

In a Newtonian fluid, we find that swimming speed increases with thinner channels and

therefore with increasing confinement. We also find that the swimmer’s amplitude de-

creases while its curvature remains relatively constant. Figure 20 summarizes these results

for swimming in Newtonian fluids (black circles) for (a) swimming speed, (b) amplitude,

and (c) curvature. Previous analytical results for an infinite undulatory sheet have suggests

that swimming speed should indeed increase with increasing confinement (Katz, 2003).

On the other hand, results in the two viscoelastic solutions of CMC show a significant de-

parture from our observation in Newtonian fluids (Fig. 20, 3000 ppm CMC: red diamonds

and 5000 ppm CMC: blue squares). We find that viscoelasticity increasingly hinders the

swimming speed of C. elegans with increasing confinement. We also notice that unlike the

Newtonian case, the viscoelastic medium seems to increasing the beating amplitude of C.

elegans despite increasing confinement. It follows that increasing viscoelastic stresses are

likely responsible for these modifications in swimming gait.
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The viscoelastic effects on the swimming speed and on the amplitude of the swimmers is

best described by Strouhal number (St). The Strouhal number describes the transient flow

patterns in an oscillating system. In this case, it is used to compare the rate of undulatory

motion to the rate of forward motion of the swimmer, and is defined as St = f A/U.

Figure 21(a) shows the Strouhal number as a function of the channel width in the case

of each of the three fluids (Ficoll, 3000 ppm CMC, and 5000 ppm CMC). The Strouhal

number is approximately equal irrespective of the presence of viscoelasticity for a freely

swimming nematode. As the swimmer becomes more confined, however, there is a very

clear separation where the Strouhal number in the Newtonian case slowly decreases while,

in the viscoelastic cases, the Strouhal number steadily increases with decreasing channel

width. This suggests that in viscoelastic fluids, worms are producing increasing transverse

motion in viscoelastic fluids under confinement, but that additional transverse motion is

poorly converted into increased forward translation. For Newtonian fluids, this is not

the case; worms require less transverse motion for slightly increased forward translation,

potentially reducing their cost of swimming when under confinement.

We also have computed an estimate of the effective drag coefficient ratio CN/CT for C.

elegans swimming in Newtonian fluids under confinement from a simple resistive force

theory model, which relates the swimming speed of an undulatory swimmer to its body

geometry and frequency (Hancock, 1953):

U = 2π2 f 2A2

c

(
CN

CT
− 1
)

, (5.1)

where U is swimming speed, c is wave speed, f is frequency, and A is amplitude. Rewrit-

ing this equation and grouping non-dimensional terms we find:

CN

CT
− 1 =

1
2π2

U f λ

f 2A2 =
1

2π2
λ

A
1
St

, (5.2)
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where St = f A/U is the Strouhal number and λ is the wavelength nematode. Here,

we see that the drag coefficient ratio is only dependent on the inverse of the Strouhal

number and a ratio of the waveform of the swimming gait λ/A; decreasing St implies

increasing CN/CT and more efficient locomotion. The results are shown in Figure 21(b) for

Newtonian fluids, which suggest a significant increase in CN/CT with decreasing channel

width w; the dashed line represents previous experimental measurements of CN/CT ≈ 1.4

for freely-swimming C. elegans (Sznitman et al., 2010b). These results therefore suggest that

C. elegans are kinematically more efficient swimmers under confinement in Newtonian

fluids, a result previously proposed analytically (Katz, 2003) and numerically (Münch

et al., 2016). This also suggests the inverse result in viscoelastic fluids under confinement;

C. elegans appear substantially less kinematically efficient.

5.2.2. Flow fields and quantifying the role of elasticity

One possible explanation for the observed deviations in Strouhal number St between New-

tonian and viscoelastic fluids is that the extent and shape of the flow field varies depending

on the viscoelasticity of the fluid and that these modifications lead to significantly modi-

fied shear rates and in turn large elastic stresses. We therefore must evaluate the the flow

fields surrounding a swimming under confinement using particle tracking velocimetry

in order to quantify the role of extensional flow and elasticity for low Reynolds number

swimmers in viscoelastic fluids under confinement. Because we are interested in the role

of viscoelastic effects, and because the viscoelastic effects should be most prominent in re-

gions of high shear rate, we select the phases or snapshots of the swimming cycle which

have the highest average shear rate around C. elegans. This generally corresponds to the

moment in a swimming cycle in which the worm is curled into a ‘C’-shape and then begins

to straighten its body.

We analyzed the flow fields around the worm at this phase of maximum shear rate in the

swimming cycle; figure 22 shows both the instantaneous streamlines and velocity magni-
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Figure 22: Streamlines and fluid velocity fields for C. elegans swimming under the follow-
ing conditions: (a) Newtonian freely swimming, (b) Newtonian confined, (c) viscoelastic
free-swimming, and (d) viscoelastic confined.
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tude for each case: Newtonian, confined and unconfined, and viscoelastic, confined and

unconfined. First, freely swimming C. elegans in a Newtonian fluid appears to produce

large velocity magnitudes compared to the confined case. This is consistent and expected

due to decrease in the average transverse velocity f A observed most easily through the

decrease in the Strouhal number (Fig. 21). There also appears to be a decrease in the size

of the head vortex and it has shifted from the upper left of the worm’s head in the free-

swimming case to the upper center of the flow field in the confined case. Next, addition of

viscoelasticity substantially changes the structure of the flow field for the free swimming

case; in particular, we can now see four well-defined vortices in the viscoelastic case and

a substantially more symmetric hyperbolic point located significantly closer to the worms

body. We also note that the overall fluid speed is lower than the Newtonian case. This

reduction in fluid speed is consistent with previous experimental results, which demon-

strated that viscoelasticity substantially enhances the decay of the flow field away from

the swimmer’s body while also decreasing the transverse and translational velocities of

the swimmer body (Shen and Arratia, 2011).

Lastly, we can examine the effects of combining both a viscoelastic medium and confine-

ment. A fairly symmetric hyperbolic point is located just inside the concave region of the

worm’s body; there are only two vortices attached to the body and the outward motion of

the head and tail appear to form the unstable manifold of the hyperbolic point, while right-

ward flow from the wall and the leftward movement of the worm’s midsection produce

the stable manifold. Fluid velocity in the entire field is largely confined to these regions

(bright yellow). This implies a substantial amount of fluid stretching and therefore elastic

response from the viscoelastic fluid. This structural change in the flow field, which sug-

gests a substantial increase in elastic stresses near the body of the worm and provides a

possible mechanism for the radical change in swimming gait shown through St and sig-

nificant reduction in swimming speed U.
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Figure 23: Weissenberg number Wi field for (a) freely swimming and (b) confined C. elegans
in a viscoelastic fluid with a relaxation time of λ = 0.8 s.

In order the quantify the role of elasticity, we can consider two non-dimensional numbers:

the Deborah number De = 2π f λ and the Weissenberg number Wi = γ̇λ, where λ is the

longest relaxation time of the fluid, found through creep relaxation measurements in a cone

and plate rheometer. Though both numbers can be viewed as a ratio of timescales, they

probe different features of the interaction between the swimmer and the fluid. First, De

quantifies the frequency at which the flow is driven, in this case the beating frequency of

C. elegans, to the fluid relaxation time. Values of De ∼ 1 imply that each new beating cycle

of the worm occurs in the presence of the elastic stresses generated by the previous cycle,

whereas De � 1 suggests that the fluid has ample time to relax between beating cycles.

In both the confined and unconfined viscoelastic flow fields, De ≈ 8. This indicates that

elastic effects are present, but is unable to help elucidate how the presence of boundaries

modifies the swimming gait. On the other hand, Wi quantifies the relative strength of

elastic stresses to viscous stresses. More explicitly, this can be written as Wi = λµγ̇2/µγ̇,

where the numerator is derived from the first normal stress difference N1. Now, it is clear
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that Wi quantifies the fluid deformation relative to the fluid dissipation and relaxation.

When Wi ≥ 1, it implies the presence of significant elastic stresses. In the case of our

flow field comparisons, the viscoelastic fluid is the same for both the free-swimming and

confined cases and has a relaxation time of λ = 0.8 s; therefore, the magnitude of Wi can

also be viewed as a proxy for a comparison of the shear rate magnitude γ̇.

Next, we locally estimate Wi for both the freely swimming and confined viscoelastic cases,

shown in Fig. 23. Immediately, we can see that the average Wi is substantially larger for

the confined case, and the region of Wi ≥ 1 envelopes the entire body of the swimmer.

Furthermore, the regions of highest Wi for the confined case near the stable and unstable

manifolds of the hyperbolic point are roughly a factor of two larger than the maximum

Wi for the free-swimming case. This is concrete evidence that the presence of boundaries

can substantially magnify the effects of fluid elasticity. In the case of C. elegans, the in-

creased elasticity due to the walls dramatically modifies its swimming gait, resulting in

larger amplitude undulations yet a slower swimming speed.
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CHAPTER 6 : Application of locomotion assays to the study of genetic disease

We are now well-equipped to use a swimming assay incorporating both kinematics (e.g.

swimming speed) and dynamics (e.g. bending force) to examine the swimming behavior

of four groups of C. elegans: control groups N2 (wildtype) and the long-lived mutant daf-

2(e1370), a diseased group smn-1(ok355), and a rescue group smn-1(ok355);daf-2(e1370). By

observing this periodic motion during forward swimming, we are able to detect statisti-

cally significant differences between the diseased and rescue groups for three important

factors: kinematic efficiency, bending force, and mechanical power. Kinematic efficiency

describes the ability of the nematode to translate its traveling wave into forward propul-

sion, bending force indicates the forces required to bend the nematode’s body into the

observed configurations, and mechanical power represents the rate of energy expenditure

for the nematode’s forward progress. Although smn-1(ok355) animals display impaired

locomotion activity, there is neither neuronal death nor gross anatomical abnormalities in

motor circuit wiring (Briese et al., 2009). This suggests that functional deficits within the

circuitry precede anatomical abnormalities and/or that the relevant anatomical defects

have not been examined at high enough resolution. We lack quantitative data on the effect

of loss of smn on worm locomotion over time.

To fill these gaps, we use non-invasive worm tracking and image processing techniques

coupled with hydrodynamic models to extract quantitative kinematic (e.g. swimming

speed) and dynamic (e.g. propulsive force) properties of C. elegans during swimming in a

water-like buffer solution (M9, Brenner 1979). Previously, smn-1(ok355) null mutants have

been shown to exhibit a dramatic and progressive decline in thrashing rate after L2 stage

(Briese et al., 2009). With this in mind, we monitored each group’s swimming gait at two

different stages: L2 (early) and L2+3 days (late, Day 5) to examine if a reduction of daf-2

signaling rescues locomotion deficit in smn-1(ok355). We note that aged-matched control

animals for smn-1 null animals at Day 5 develop to adults, while smn-1(ok355) or smn-
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1(ok355);daf-2(e1370) arrest at L4 stage. Thus, L4 larva of wild type N2 and daf-2(e1370)

are selected as control groups based on the most biomechanically-relevant developmental

parameter: the nematode’s body length. We note that the typical body lengths for early-

and late-stage groups are 0.45 mm and 0.67 mm respectively.

6.1. Methods

Worms were transferred into 400 µl of M9 buffer contained in a sealed fluidic chamber 2

cm in diameter and 1 mm in depth. Image series of swimming nematodes were captured

using a standard bright-field stereomicroscope and a CCD camera at 30 frames per sec-

ond. We analyzed swimming images using in-house biomechanical profiling software. To

eliminate boundary effects, we place the focal plane at the center of the chamber and out-

of-focus recordings are discarded. Additionally, all individuals swim for a minimum four

full undulatory cycles.

6.2. Results and discussion

Figure 24 summarizes the modification in swimming dynamics among a control group, the

diseased group, and the rescue group. The left column shows the body shapes (nematode’s

centerlines) of three groups over one beating cycle, with red lines representing body shape

during phases of the nematode’s downstroke and blue lines representing body shape dur-

ing the upstroke. From top to bottom, these groups are wild type N2, smn-1(ok355), and

smn-1(ok355);daf-2(e1370). Using these body shapes, we can compute a number of prop-

erties to describe the swimming gait of each group including body curvature. Examples

of this are shown in the right column, which displays kymographs of the worm’s body

curvature for one second of forward swimming (see methods section for more detail).

The striations of curvature clearly show beating patterns moving down the body of the ne-

matode from head to tail; the slope of these stripes represent the wave speed, or the rate at

which waves of curvature move down the body of the worm, and the rate at which the pat-
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Figure 24: Body shapes over one full cycle and curvature kymographs for control group N2
(wildtype), a diseased group smn-1(ok355), and a rescue group smn-1(ok355);daf-2(e1370).

tern repeats itself represents the frequency of the worms beating. Curvature is again shown

for three groups (from top to bottom: wild type N2, smn-1(ok355), and smn-1(ok355);daf-

2(e1370)). We observe, at least qualitatively, that the curvature patterns of smn-1(ok355)

shows significant differences from that of healthy wild type N2 nematodes. Furthermore,

it appears that the curvature pattern of smn-1(ok355);daf-2(e1370) seems similar to the wild

type group, suggesting that a reduction indaf-2 signaling may rescue the behavior of the

smn-1(ok355);daf-2(e1370) group.

We further examine the data shown in Figure 24 using in-house biomechanical profil-

ing algorithms by quantifying each group’s swimming speed and beating frequency. At

the L2 stage, the swimming speed of N2 is approximately 0.2 mm/s (Figure 25). There

is no statistically significant difference among the swimming speeds of N2, daf-2(e1370),

smn-1(ok355), and smn-1(ok355);daf-2(e1370) at the L2 stage (p > 0.05, Kruskal-Wallis test).
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Figure 25: (a) Length, (b) swimming speed, (c) frequency, (d) bending force, and (e) me-
chanical power control groups N2 (wildtype) and the long-lived mutant daf-2(e1370), a
diseased group smn-1(ok355), and a rescue group smn-1(ok355);daf-2(e1370). Black bars rep-
resent standard error.
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With developmental progression (late stage), wild type N2 and daf-2(e1370) significantly

increase their swimming speed by 44% and 60%, respectively. In contrast, smn-1(ok355)

and smn-1(ok355);daf-2(e1370) remain similar to their L2 stage swimming speeds even at

Day 5, suggesting that the presence of smn-1(ok355) is impairing locomotion rate.

Next, we investigate the nematode’s beating frequency. We observe the frequency of N2

remains statistically similar with developmental progression (1.8 Hz at the L2, and 2.2 Hz

at the L4, p > 0.05, Kruskal-Wallis test) (Figure 25). For smn-1(ok355), the beating frequency

at the L2 stage is significantly higher than N2 (2.5 Hz vs. 1.8 Hz, p < 0.05, Kruskal-Wallis

test) and decreases by 28% from the L2 stage to Day 5 of smn-1(ok355) from 2.5 Hz to

1.7 Hz (p < 0.01, Kruskal-Wallis test). We also find that the beating frequency of smn-

1(ok355);daf-2(e1370) at the L2 stage is similar to the age-matched smn-1(ok355) (2.2 Hz vs.

2.5 Hz), but unlike the smn-1(ok355) group, smn-1(ok355);daf-2(e1370) is able to maintain

its beating frequency through Day 5 in a fashion similar to wild type N2. This perhaps

hints at an increase in coordination or signaling for smn-1(ok355);daf-2(e1370) compared to

smn-1(ok355).

While an analysis of these simple swimming kinematics reveals that the nematode’s beat-

ing frequency appears to improve with the inactivation of daf-2 signaling, the nematode’s

swimming speed appear to be unmodified. While swimming frequency and speed are im-

portant factors in describing the nematode’s locomotion, there are of course other quanti-

ties that can be measured in order to elucidate the impact of daf-2 including the swimming

nematode’s propulsive force and mechanical power. In their natural environments, C. el-

egans navigate diverse environments such as water and soil, generating propulsion via

alternating contraction and relaxation of two dorsal and two ventral muscle groups along

the length of the worm’s body. Through the above observations of the worm’s bending, we

can use the hydrodynamic model Resistive Force Theory (RFT, (Gray and Hancock, 1955))

to estimate the propulsive force and mechanical power of C. elegans. We expect these two
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measurements to provide much more detailed information about group differences, since

they more directly probe muscle output and the energy expended via locomotion.

Typically, as a worm develops, we expect the propulsive force of the organism to in-

crease; indeed, we find that both wildtype N2 and daf-2(e1370) controls exhibit an increase

in propulsive force of 55% and 59%, respectively, when they grow from L2 to L4 stage

(p < 0.01, Kruskal-Wallis test, Figure 25). In contrast, for smn-1(ok355), the propulsive

force remains the same (or slightly decreases) during the L2 to L4 developmental period,

suggesting that muscle output is largely impaired. In contrast, smn-1(ok355);daf-2(e1370)

shows an increase in bending force by 20% (p < 0.01, Kruskal-Wallis test) between the L2

and L4 states, suggesting that the decrease in daf-2 signaling increases output of the dorsal

and ventral muscles.

Furthermore, we measured the mechanical power of each group to estimate the rate of

energy expenditure available for locomotion. We observe that wild type N2 and daf-

2(e1370) significantly increase their mechanical power (250% and 150%, respectively) as

they grow and develop (Figure 25). In stark contrast, smn-1(ok355) produces the same

mechanical power at the L2 and Day 5 states, suggesting that during development, the

worms are unable to increase their capacity for locomotion. At late stage (Day 5), the

mechanical power of the smn-1(ok355) group is significantly lower than N2 (0.83 vs. 1.7,

p < 0.001, Kruskal-Wallis test). Reduction of daf-2 signaling (smn-1(ok355);daf-2(e1370))

significantly improves mechanical power compared to smn-1(ok355), and the energy ex-

penditure of smn-1(ok355);daf-2(e1370) is statistically indistinguishable from the late stage

wild type group (p > 0.05, Kruskal-Wallis test)(Figure 25).
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CHAPTER 7 : Summary and Future Work

7.1. Perform systematic studies of swimming in fluids with non-Newtonian vis-

cosity behavior

We have investigated the effects of shear-thinning viscosity on the swimming kinematics

and flow fields of the nematode C. elegans in solutions of a semi-rigid, rod-like polymer

(XG) in buffer solution (M9). We find no significant differences between the observed

kinematics in shear-thinning fluids and the kinematics in Newtonian fluids of similar vis-

cosity, a result consistent with recent theoretical calculations (Vélez-Cordero and Lauga,

2013). Despite this experimental observation (unmodified kinematics), we find substantial

differences between the resulting Newtonian and shear-thinning flow fields.

Temporal and spatial averages of velocity fields, along with a snapshot of the flow fields

at one phase in the cycle, reveal a structural difference in the flow field near the head of

the worm in shear-thinning fluids when compared to the Newtonian case. Streamlines

reveal the major structural difference occurs within the dominant body vortex near the ne-

matode’s head; we quantify this effect by computing the circulation of the vortex, thereby

accounting for strength and size. We find that an increase in shear-thinning behaviour

leads to an enhancement in circulation, consistent with recent theoretical calculations (see

Vélez-Cordero and Lauga (2013)). Furthermore, the shear-thinning flow fields reveal a de-

crease in average fluid velocity near the head of the organism and an increase near the tail.

We find that the ratio of average fluid velocity at the tail to that at the head increases as

the Carreau timescale λCr increases, and that this effect plateaus once λCr is similar to the

timescale of the forward swimming motion, U/L.

Using each side of the energy balance for a low Reynolds number swimmer (Eq. 3.9), we

find that (i) the mechanical power and (ii) the viscous dissipation rate suggest that the

cost of swimming for an undulatory swimming in shear-thinning fluids is smaller than
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the cost of swimming in a Newtonian fluid with the equivalent zero-shear viscosity. Fur-

thermore, this cost of swimming is well-described by the scaling P ∼ ηeffU2 (Fig. 12(b)).

Our experimental observations show good agreement with a recent theoretical scaling (Li

and Ardekani, 2015) (Fig. 13). These results provide a framework for understanding of the

cost of swimming in generalized Newtonian fluids, which can be predicted using only the

fluid’s rheology and simple swimming kinematics.

7.2. Examine swimming under anisotropic conditions, including confinement in

non-Newtonian fluids

7.2.1. Swimming in anisotropic fluids

We have investigated the swimming behavior of the nematode C. elegans in semi-dilute

and concentrated solutions of a rod-like polymer (XG). We find a rapid increase in the ne-

matode’s swimming speed as the polymer concentration increases (Fig 16(c)). This sudden

increase in swimming speed occurs near the solution’s transition from the semi-dilute to

concentrated regime. We show that this increase in swimming speed is most likely re-

lated to the anisotropic response of the fluid microstructure to applied stress due to the

nematode’s swimming motion. In short, the undulatory swimming motion of C. elegans

induces a structural anisotropy which leads to an increase in the effective drag coefficient

ratio Cn/Ct and an enhancement in swimming speed U (Fig. 18(c)).

Experimentally measured velocity fields corroborate with the proposed mechanism. The

PDFs of the velocities of tracer particles show important differences between semi-dilute

and concentrated solutions (see Fig. 18(a) and (b)). While for the semi-dilute case both

the tangential and normal velocity components collapse onto one another, we find a sharp

difference between the two components at high velocities for nematodes swimming in

concentrated solutions. In particular, we find that the tangential velocity distribution has

a faster decay at high velocities than the normal direction, which indicates a relative en-
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hancement in the normal component of momentum.

Our finding serves as a step towards understanding the locomotion of organisms in highly

structured fluid environments such as human tissues, gels, and mucus. Such understand-

ing can be important, for example, in modifying mucous systems to fend off bacterial

infection, to treat human fertility disorders by altering the cervical fluid environment, and

to better maintain ecological systems.

7.2.2. Swimming in confined viscoelastic fluids

We observe a steadily increasing swimming speed with decreasing channel width in the

Newtonian case and and decreasing swimming speed and increasing transverse waving

speed f A with decreasing channel width in viscoelastic cases. These phenomena appear

to be caused by interaction between the nematode’s flow field and the walls, which sub-

stantially modify the structure of the flow fields to produce a hyperbolic point with locally

large fluid velocities and shear rates. This change in structure leads to a substantial in-

crease in Wi near the body of the nematode, suggesting an increase in the viscoelastic

stresses. The increase in viscoelastic stresses due to the presence of the walls suggests

a mechanism for the observed inefficient swimming gait with decreasing channel width;

despite C. elegans producing larger amplitude undulations and a larger typical transverse

speed f A in viscoelastic fluids with decreasing channel width, the nematodes ultimately

swim substantially slower, opposite of what the expected result in a Newtonian fluid. The

combination of viscoelasticity and confinement serve to be a hindrance for nematodes and,

by extension, other undulatory swimmers with similar motility gaits.

7.3. Apply swimming assays to the study of genetic disease

We find that an analysis of kinematic and dynamic biomechanical properties (i.e. fre-

quency, propulsive force, and mechanical power) indicate that a reduction of daf-2 signal-

ing has the potential to enhance the locomotion capability in smn-1(ok355). While these
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statistically-significant modifications do not directly increase the swimming speed of the

organism, they appear to rescue the beating patterns, muscle output, and the energy ex-

penditure during swimming.

7.4. Future Work

A natural extension of this work is to consider the interaction of many swimming and non-

Newtonian fluids. Examples including the study of collective motion in non-Newtonian

fluids and the effects suspensions of active swimmers of the mechanical properties of

shear-thinning and viscoelastic fluids. Systems of many swimmers may yield increasingly

accurate models for biofilm formation in mucus, the mechanical properties and mixing of

streams of organisms used in the production of biofuels, and the transport of organisms in

ecological and biological flows.
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