333 research outputs found

    Host–pathogen coevolution in human tuberculosis

    Get PDF
    Tuberculosis (TB) is a disease of antiquity. Yet TB today still causes more adult deaths than any other single infectious disease. Recent studies show that contrary to the common view postulating an animal origin for TB, Mycobacterium tuberculosis complex (MTBC), the causative agent of TB, emerged as a human pathogen in Africa and colonized the world accompanying the Out-of-Africa migrations of modern humans. More recently, evolutionarily ‘modern’ lineages of MTBC expanded as a consequence of the global human population increase, and spread throughout the world following waves of exploration, trade and conquest. While epidemiological data suggest that the different phylogenetic lineages of MTBC might have adapted to different human populations, overall, the phylogenetically ‘modern’ MTBC lineages are more successful in terms of their geographical spread compared with the ‘ancient’ lineages. Interestingly, the global success of ‘modern’ MTBC correlates with a hypo-inflammatory phenotype in macrophages, possibly reflecting higher virulence, and a shorter latency in humans. Finally, various human genetic variants have been associated with different MTBC lineages, suggesting an interaction between human genetic diversity and MTBC variation. In summary, the biology and the epidemiology of human TB have been shaped by the long-standing association between MTBC and its human host

    Antimicrobial resistance in Mycobacterium tuberculosis : mechanistic and evolutionary perspectives

    Get PDF
    Antibiotic-resistant Mycobacterium tuberculosis strains are threatening progress in containing the global tuberculosis epidemic. Mycobacterium tuberculosis is intrinsically resistant to many antibiotics, limiting the number of compounds available for treatment. This intrinsic resistance is due to a number of mechanisms including a thick, waxy, hydrophobic cell envelope and the presence of drug degrading and modifying enzymes. Resistance to the drugs which are active against M. tuberculosis is, in the absence of horizontally transferred resistance determinants, conferred by chromosomal mutations. These chromosomal mutations may confer drug resistance via modification or overexpression of the drug target, as well as by prevention of prodrug activation. Drug resistance mutations may have pleiotropic effects leading to a reduction in the bacterium's fitness, quantifiable e.g. by a reduction in the in vitro growth rate. Secondary so-called compensatory mutations, not involved in conferring resistance, can ameliorate the fitness cost by interacting epistatically with the resistance mutation. Although the genetic diversity of M. tuberculosis is low compared to other pathogenic bacteria, the strain genetic background has been demonstrated to influence multiple aspects in the evolution of drug resistance. The rate of resistance evolution and the fitness costs of drug resistance mutations may vary as a function of the genetic background

    Risk factors for meningococcal meningitis in northern Ghana

    Get PDF
    Meningococcal meningitis is a major cause of morbidity and mortality in the meningitis belt of sub-Saharan Africa where it occurs in epidemics every 8-12 years. Risk factors for the disease in this setting remain largely unknown. We carried out a case-control study to investigate possible risk factors among survivors of a meningitis epidemic occurring in 1997 in northern Ghana. A structured questionnaire on socio-economic factors, housing and household overcrowding, smoking and exposure to smoke and close contact with a case was administered to 505 of the survivors and 505 of age-, sex- and location-matched controls. Cooking in kitchens with firewood stoves (OR 9·00, CI 1·25-395) and sharing a bedroom with a case (OR 2·18 CI 1·43-3·4) were found to be risk factors for disease. Socio-economic factors, overcrowding, smoking and passive exposure to tobacco smoke were not found to be risk factors. Exposure to smoke from cooking fires or close contact with a case puts people at risk of contracting meningococcal meningitis. In the hot dry months, exposure to smoke from cooking fires should be minimized by encouraging alternatives to cooking over wood fires, or cooking outside. If wood-burning stoves cannot be avoided, kitchens should be made larger with improved ventilation. Meningitis cases should be nursed in well-ventilated rooms and the number of people sharing a room with a case kept at a minimu

    Tuberculosis in Swiss captive Asian elephants: microevolution of Mycobacterium tuberculosis characterized by multilocus variable-number tandem-repeat analysis and whole-genome sequencingle-number tandem-repeat analysis and whole-genome sequencing

    Get PDF
    Zoonotic tuberculosis is a risk for human health, especially when animals are in close contact with humans. Mycobacterium tuberculosis was cultured from several organs, including lung tissue and gastric mucosa, of three captive elephants euthanized in a Swiss zoo. The elephants presented weight loss, weakness and exercise intolerance. Molecular characterization of the M. tuberculosis isolates by spoligotyping revealed an identical profile, suggesting a single source of infection. Multilocus variable-number of tandem-repeat analysis (MLVA) elucidated two divergent populations of bacteria and mixed infection in one elephant, suggesting either different transmission chains or prolonged infection over time. A total of eight M. tuberculosis isolates were subjected to whole-genome sequence (WGS) analysis, confirming a single source of infection and indicating the route of transmission between the three animals. Our findings also show that the methods currently used for epidemiological investigations of M. tuberculosis infections should be carefully applied on isolates from elephants. Moreover the importance of multiple sampling and analysis of within-host mycobacterial clonal populations for investigations of transmission is demonstrated

    Molecular epidemiology of Mycobacterium africanum in Ghana

    Get PDF
    BACKGROUND: Mycobacterium africanum comprises two phylogenetic lineages within the M. tuberculosis complex (MTBC) and is an important cause of human tuberculosis (TB) in West Africa. The reasons for this geographic restriction of M. africanum remain unclear. Here, we performed a prospective study to explore associations between the characteristics of TB patients and the MTBC lineages circulating in Ghana. METHOD: We genotyped 1,211 MTBC isolates recovered from pulmonary TB patients recruited between 2012 and 2014 using single nucleotide polymorphism typing and spoligotyping. Associations between patient and pathogen variables were assessed using univariate and multivariate logistic regression. RESULTS: Of the 1,211 MTBC isolates analysed, 71.9 % (871) belonged to Lineage 4; 12.6 % (152) to Lineage 5 (also known as M. africanum West-Africa 1), 9.2 % (112) to Lineage 6 (also known as M. africanum West-Africa 2) and 0.6 % (7) to Mycobacterium bovis. Univariate analysis revealed that Lineage 6 strains were less likely to be isoniazid resistant compared to other strains (odds ratio = 0.25, 95 % confidence interval (CI): 0.05-0.77, P < 0.01). Multivariate analysis showed that Lineage 5 was significantly more common in patients from the Ewe ethnic group (adjusted odds ratio (adjOR): 2.79; 95 % CI: 1.47-5.29, P < 0.001) and Lineage 6 more likely to be found among HIV-co-infected TB patients (adjOR = 2.2; 95 % confidence interval (CI: 1.32-3.7, P < 0.001). CONCLUSION: Our findings confirm the importance of M. africanum in Ghana and highlight the need to differentiate between Lineage 5 and Lineage 6, as these lineages differ in associated patient variables
    • 

    corecore