144 research outputs found
Training attention control of very preterm infants: protocol for a feasibility study of the Attention Control Training (ACT)
Background
Children born preterm may display cognitive, learning, and behaviour difficulties as they grow up. In particular, very premature birth (gestation age between 28 and less than 32 weeks) may put infants at increased risk of intellectual deficits and attention deficit disorder. Evidence suggests that the basis of these problems may lie in difficulties in the development of executive functions. One of the earliest executive functions to emerge around 1 year of age is the ability to control attention. An eye-tracking-based cognitive training programme to support this emerging ability, the Attention Control Training (ACT), has been developed and tested with typically developing infants. The aim of this study is to investigate the feasibility of using the ACT with healthy very preterm (VP) infants when they are 12 months of age (corrected age). The ACT has the potential to address the need for supporting emerging cognitive abilities of VP infants with an early intervention, which may capitalise on infants’ neural plasticity.
Methods/design
The feasibility study is designed to investigate whether it is possible to recruit and retain VP infants and their families in a randomised trial that compares attention and social attention of trained infants against those that are exposed to a control procedure. Feasibility issues include the referral/recruitment pathway, attendance, and engagement with testing and training sessions, completion of tasks, retention in the study, acceptability of outcome measures, quality of data collected (particularly, eye-tracking data). The results of the study will inform the development of a larger randomised trial.
Discussion
Several lines of evidence emphasise the need to support emerging cognitive and learning abilities of preterm infants using early interventions. However, early interventions with preterm infants, and particularly very preterm ones, face difficulties in recruiting and retaining participants. These problems are also augmented by the health vulnerability of this population. This feasibility study will provide the basis for informing the implementation of an early cognitive intervention for very preterm infants.
Trial registration
Registered Registration ID: NCT03896490. Retrospectively registered at Clinical Trials Protocol Registration and Results System (clinicaltrials.gov)
Characteristics of clinical trials in rare vs. common diseases : A register-based Latvian study
Publisher Copyright: © 2018 Logviss et al. This is an open ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and eproduction in any medium, provided the original author and source are credited.Background Conducting clinical studies in small populations may be very challenging; therefore quality of clinical evidence may differ between rare and non-rare disease therapies. Objective This register-based study aims to evaluate the characteristics of clinical trials in rare diseases conducted in Latvia and compare them with clinical trials in more common conditions. Methods The EU Clinical Trials Register (clinicaltrialsregister.eu) was used to identify interventional clinical trials related to rare diseases (n = 51) and to compose a control group of clinical trials in non-rare diseases (n = 102) for further comparison of the trial characteristics. Results We found no significant difference in the use of overall survival as a primary endpoint in clinical trials between rare and non-rare diseases (9.8% vs. 13.7%, respectively). However, clinical trials in rare diseases were less likely to be randomized controlled trials (62.7% vs. 83.3%). Rare and non-rare disease clinical trials varied in masking, with rare disease trials less likely to be double blind (45.1% vs. 63.7%). Active comparators were less frequently used in rare disease trials (36.4% vs. 58.8% of controlled trials). Clinical trials in rare diseases enrolled fewer participants than those in non-rare diseases: In Latvia (mean 18.3 vs. 40.2 subjects, respectively), in the European Economic Area (mean 181.0 vs. 626.9 subjects), and in the whole clinical trial (mean 335.8 vs. 1406.3 subjects). Although, we found no significant difference in trial duration between the groups (mean 38.3 vs. 36.4 months). Conclusions The current study confirms that clinical trials in rare diseases vary from those in non-rare conditions, with notable differences in enrollment, randomization, masking, and the use of active comparators. However, we found no significant difference in trial duration and the use of overall survival as a primary endpoint.publishersversionPeer reviewe
The impact of cyclin-dependent kinase 5 depletion on poly(ADP-ribose) polymerase activity and responses to radiation
Cyclin-dependent kinase 5 (Cdk5) has been identified as a determinant of sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Here, the consequences of its depletion on cell survival, PARP activity, the recruitment of base excision repair (BER) proteins to DNA damage sites, and overall DNA single-strand break (SSB) repair were investigated using isogenic HeLa stably depleted (KD) and Control cell lines. Synthetic lethality achieved by disrupting PARP activity in Cdk5-deficient cells was confirmed, and the Cdk5KD cells were also found to be sensitive to the killing effects of ionizing radiation (IR) but not methyl methanesulfonate or neocarzinostatin. The recruitment profiles of GFP-PARP-1 and XRCC1-YFP to sites of micro-irradiated Cdk5KD cells were slower and reached lower maximum values, while the profile of GFP-PCNA recruitment was faster and attained higher maximum values compared to Control cells. Higher basal, IR, and hydrogen peroxide-induced polymer levels were observed in Cdk5KD compared to Control cells. Recruitment of GFP-PARP-1 in which serines 782, 785, and 786, potential Cdk5 phosphorylation targets, were mutated to alanines in micro-irradiated Control cells was also reduced. We hypothesize that Cdk5-dependent PARP-1 phosphorylation on one or more of these serines results in an attenuation of its ribosylating activity facilitating persistence at DNA damage sites. Despite these deficiencies, Cdk5KD cells are able to effectively repair SSBs probably via the long patch BER pathway, suggesting that the enhanced radiation sensitivity of Cdk5KD cells is due to a role of Cdk5 in other pathways or the altered polymer levels
Diversification and Specialization of Plant RBR Ubiquitin Ligases
Background: RBR ubiquitin ligases are components of the ubiquitin-proteasome system present in all eukaryotes. They are characterized by having the RBR (RING – IBR – RING) supradomain. In this study, the patterns of emergence of RBR genes in plants are described. Methodology/Principal Findings: Phylogenetic and structural data confirm that just four RBR subfamilies (Ariadne, ARA54, Plant I/Helicase and Plant II) exist in viridiplantae. All of them originated before the split that separated green algae from the rest of plants. Multiple genes of two of these subfamilies (Ariadne and Plant II) appeared in early plant evolution. It is deduced that the common ancestor of all plants contained at least five RBR genes and the available data suggest that this number has been increasing slowly along streptophyta evolution, although losses, especially of Helicase RBR genes, have also occurred in several lineages. Some higher plants (e. g. Arabidopsis thaliana, Oryza sativa) contain a very large number of RBR genes and many of them were recently generated by tandem duplications. Microarray data indicate that most of these new genes have low-level and sometimes specific expression patterns. On the contrary, and as occurs in animals, a small set of older genes are broadly expressed at higher levels. Conclusions/Significance: The available data suggests that the dynamics of appearance and conservation of RBR genes is quite different in plants from what has been described in animals. In animals, an abrupt emergence of many structurall
Perceived Parenting and Adolescent Cyber-Bullying: Examining the Intervening Role of Autonomy and Relatedness Need Satisfaction, Empathic Concern and Recognition of Humanness
Due to the progress in information technology, cyber-bullying is becoming one of the most common forms of interpersonal harm, especially among teenagers. The present study (N = 548) aimed to investigate the relation between perceived parenting style (in terms of autonomy support and psychological control) and cyber-bullying in adolescence. Thereby, the study tested for the intervening role of adolescent need satisfaction (i.e., autonomy and relatedness), empathic concern towards others, and adolescents' recognition of full humanness to cyber-bullying offenders and victims. Findings revealed both a direct and an indirect relation between parenting and cyber-bullying. More specifically, parental psychological control directly predicted cyber-bullying, whereas parental autonomy support related to less cyber-bullying indirectly, as it was associated with the satisfaction of adolescents' need for autonomy, which predicted more empathic concern towards others, which in turn differentially related to recognition of humanness to victims and bullies. The discussion focuses on the implications of the current findings
Motor Cortex Representation of the Upper-Limb in Individuals Born without a Hand
The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics) led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1) of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1) whether we could evoke phantom sensations, and 2) whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex
Habitat Composition and Connectivity Predicts Bat Presence and Activity at Foraging Sites in a Large UK Conurbation
Background: Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. Methodology/Principal Findings: We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km 2 scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of,60 % built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species
Reduction in Learning Rates Associated with Anterograde Interference Results from Interactions between Different Timescales in Motor Adaptation
Prior experiences can influence future actions. These experiences can not only drive adaptive changes in motor output, but they can also modulate the rate at which these adaptive changes occur. Here we studied anterograde interference in motor adaptation – the ability of a previously learned motor task (Task A) to reduce the rate of subsequently learning a different (and usually opposite) motor task (Task B). We examined the formation of the motor system's capacity for anterograde interference in the adaptive control of human reaching-arm movements by determining the amount of interference after varying durations of exposure to Task A (13, 41, 112, 230, and 369 trials). We found that the amount of anterograde interference observed in the learning of Task B increased with the duration of Task A. However, this increase did not continue indefinitely; instead, the interference reached asymptote after 15–40 trials of Task A. Interestingly, we found that a recently proposed multi-rate model of motor adaptation, composed of two distinct but interacting adaptive processes, predicts several key features of the interference patterns we observed. Specifically, this computational model (without any free parameters) predicts the initial growth and leveling off of anterograde interference that we describe, as well as the asymptotic amount of interference that we observe experimentally (R2 = 0.91). Understanding the mechanisms underlying anterograde interference in motor adaptation may enable the development of improved training and rehabilitation paradigms that mitigate unwanted interference
Changes in Gene Expression and Cellular Architecture in an Ovarian Cancer Progression Model
BACKGROUND: Ovarian cancer is the fifth leading cause of cancer deaths among women. Early stage disease often remains undetected due the lack of symptoms and reliable biomarkers. The identification of early genetic changes could provide insights into novel signaling pathways that may be exploited for early detection and treatment. METHODOLOGY/PRINCIPAL FINDINGS: Mouse ovarian surface epithelial (MOSE) cells were used to identify stage-dependent changes in gene expression levels and signal transduction pathways by mouse whole genome microarray analyses and gene ontology. These cells have undergone spontaneous transformation in cell culture and transitioned from non-tumorigenic to intermediate and aggressive, malignant phenotypes. Significantly changed genes were overrepresented in a number of pathways, most notably the cytoskeleton functional category. Concurrent with gene expression changes, the cytoskeletal architecture became progressively disorganized, resulting in aberrant expression or subcellular distribution of key cytoskeletal regulatory proteins (focal adhesion kinase, α-actinin, and vinculin). The cytoskeletal disorganization was accompanied by altered patterns of serine and tyrosine phosphorylation as well as changed expression and subcellular localization of integral signaling intermediates APC and PKCβII. CONCLUSIONS/SIGNIFICANCE: Our studies have identified genes that are aberrantly expressed during MOSE cell neoplastic progression. We show that early stage dysregulation of actin microfilaments is followed by progressive disorganization of microtubules and intermediate filaments at later stages. These stage-specific, step-wise changes provide further insights into the time and spatial sequence of events that lead to the fully transformed state since these changes are also observed in aggressive human ovarian cancer cell lines independent of their histological type. Moreover, our studies support a link between aberrant cytoskeleton organization and regulation of important downstream signaling events that may be involved in cancer progression. Thus, our MOSE-derived cell model represents a unique model for in depth mechanistic studies of ovarian cancer progression
- …