44 research outputs found

    Disease recurrence in paediatric renal transplantation

    Get PDF
    Renal transplantation (Tx) is the treatment of choice for end-stage renal disease. The incidence of acute rejection after renal Tx has decreased because of improving early immunosuppression, but the risk of disease recurrence (DR) is becoming relatively high, with a greater prevalence in children than in adults, thereby increasing patient morbidity, graft loss (GL) and, sometimes, mortality rate. The current overall graft loss to DR is 7–8%, mainly due to primary glomerulonephritis (70–80%) and inherited metabolic diseases. The more typical presentation is a recurrence of the full disease, either with a high risk of GL (focal and segmental glomerulosclerosis 14–50% DR, 40–60% GL; atypical haemolytic uraemic syndrome 20–80% DR, 10–83% GL; membranoproliferative glomerulonephritis 30–100% DR, 17–61% GL; membranous nephropathy ∼30% DR, ∼50% GL; lipoprotein glomerulopathy ∼100% DR and GL; primary hyperoxaluria type 1 80–100% DR and GL) or with a low risk of GL [immunoglobulin (Ig)A nephropathy 36–60% DR, 7–10% GL; systemic lupus erythematosus 0–30% DR, 0–5% GL; anti-neutrophilic cytoplasmic antibody (ANCA)-associated glomerulonephritis]. Recurrence may also occur with a delayed risk of GL, such as insulin-dependent diabetes mellitus, sickle cell disease, endemic nephropathy, and sarcoidosis. In other primary diseases, the post-Tx course may be complicated by specific events that are different from overt recurrence: proteinuria or cancer in some genetic forms of nephrotic syndrome, anti-glomerular basement membrane antibodies-associated glomerulonephritis (Alport syndrome, Goodpasture syndrome), and graft involvement as a consequence of lower urinary tract abnormality or human immunodeficiency virus (HIV) nephropathy. Some other post-Tx conditions may mimic recurrence, such as de novo membranous glomerulonephritis, IgA nephropathy, microangiopathy, or isolated specific deposits (cystinosis, Fabry disease). Adequate strategies should therefore be added to kidney Tx, such as donor selection, associated liver Tx, plasmatherapy, specific immunosuppression protocols. In such conditions, very few patients may be excluded from kidney Tx only because of a major risk of DR and repeated GL. In the near future the issue of DR after kidney Tx may benefit from alternatives to organ Tx, such as recombinant proteins, specific monoclonal antibodies, cell/gene therapy, and chaperone molecules

    Nephronophthisis

    Get PDF
    Nephronophthisis (NPH) is an autosomal recessive disease characterized by a chronic tubulointerstitial nephritis that progress to terminal renal failure during the second decade (juvenile form) or before the age of 5 years (infantile form). In the juvenile form, a urine concentration defect starts during the first decade, and a progressive deterioration of renal function is observed in the following years. Kidney size may be normal, but loss of corticomedullary differentiation is often observed, and cysts occur usually after patients have progressed to end-stage renal failure. Histologic lesions are characterized by tubular basement membrane anomalies, tubular atrophy, and interstitial fibrosis. The infantile form is characterized by cortical microcysts and progression to end-stage renal failure before 5 years of age. Some children present with extrarenal symptoms: retinitis pigmentosa (Senior-Løken syndrome), mental retardation, cerebellar ataxia, bone anomalies, or liver fibrosis. Positional cloning and candidate gene approaches led to the identification of eight causative genes (NPHP1, 3, 4, 5, 6, 7, 8, and 9) responsible for the juvenile NPH and one gene NPHP2 for the infantile form. NPH and associated disorders are considered as ciliopathies, as all NPHP gene products are expressed in the primary cilia, similarly to the polycystic kidney disease (PKD) proteins

    Primary Oxalosis

    No full text

    Mutations in Inversin cause Nephronophthisis Type 2, linking Cystic Kidney Disease to the Function of Primary Cilia and Left-Right Axis Determination

    Full text link
    Nephronophthisis (NPHP), an autosomal recessive cystic kidney disease, leads to chronic renal failure in children. The genes mutated in NPHP1 and NPHP4 have been identified, and a gene locus associated with infantile nephronophthisis (NPHP2) was mapped. The kidney phenotype of NPHP2 combines clinical features of NPHP and polycystic kidney disease (PKD). Here, we identify inversin (INVS) as the gene mutated in NPHP2 with and without situs inversus. We show molecular interaction of inversin with nephrocystin, the product of the gene mutated in NPHP1 and interaction of nephrocystin with β-tubulin, a main component of primary cilia. We show that nephrocystin, inversin and β-tubulin colocalize to primary cilia of renal tubular cells. Furthermore, we produce a PKD-like renal cystic phenotype and randomization of heart looping by knockdown of invs expression in zebrafish. The interaction and colocalization in cilia of inversin, nephrocystin and β-tubulin connect pathogenetic aspects of NPHP to PKD, to primary cilia function and to left-right axis determination.http://deepblue.lib.umich.edu/bitstream/2027.42/191561/2/78_Otto_NG_INVS_NPHP2_2003.pdfPublished versionDescription of 78_Otto_NG_INVS_NPHP2_2003.pdf : Published versio
    corecore