23 research outputs found

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure

    Do birds and beetles show similar responses to urbanization?

    No full text
    To date, the vast majority of studies in urban areas have been carried out on birds, yet it is not known whether the responses of birds to urbanization are congruent with those of other taxa. In this paper, we compared the responses of breeding birds and carabid beetles to urbanization, specifically asking whether the emerging generalizations of the effects of extreme levels of urbanization on birds (declines in total species richness and the richness of specialist species, increases in total abundance and the abundances of native generalist and introduced species, and community simplification, including increasing similarity) could also be applied to ground beetles. We also directly tested for congruence between birds and ground beetles using correlations between variables describing bird and beetle community structure and correlations between bird and beetle distance matrices describing community dissimilarity between pairs of sampling locations. Breeding bird and carabid beetle community data were collected in Ottawa, Ontario, and Gatineau, Quebec, Canada, in two groups of sites: developed sites representing the predictor variable within-site housing density, and forested sites adjacent to development representing the predictor variable neighboring housing density (each site was 0.25 km 2). Breeding birds and carabid beetles do not respond similarly to increasing within-site housing density but do exhibit some similar responses to increasing neighboring housing density. Birds displayed strong declines in diversity, compositional changes, and community simplification in response to increasing within-site housing density. Forest and introduced species of birds and beetles responded similarly to increasing housing density within a site, but responses of overall diversity and open-habitat species richness and patterns of community simplification differed between birds and beetles. Increasing neighboring housing density resulted in increases in the abundances of introduced birds and introduced beetles and similar patterns of community simplification in both taxa. To better understand and mitigate the effects of urbanization on biodiversity, we suggest that, in addition to the responses of birds, future research should focus on the responses of other taxa in the urban matrix

    Effect of landscape context on anuran communities in breeding ponds in the National Capital Region, Canada

    No full text
    Land cover change, predominantly habitat conversion to agricultural use and urbanization, has recently been recognized as the primary cause of biodiversity loss in terrestrial ecosystems. We evaluated the relative effects of urban and agricultural landscapes on anuran species richness and the abundance of six anuran species found at breeding ponds in and around the cities of Ottawa, Ontario and Gatineau, Quebec. We performed six call surveys at 29 permanent focal ponds surrounded by one of three landscape contexts: primarily urban, primarily agricultural, and primarily forested. We also measured three local pond variables to control for the effects of local habitat quality in our analyses. We found that anuran species richness was significantly lower in breeding ponds in urban landscapes compared to forested and agricultural landscapes, which exhibited no significant difference in species richness. The abundances of individual anuran species were also consistently lower in urban landscapes for all species except one, which exhibited no response to landscape type. Three species had their highest abundances in ponds in forested landscapes, whereas two species had their highest abundances in ponds in agricultural landscapes. We conclude that ponds embedded in urban landscapes support lower biodiversity than ponds in agricultural settings. We suggest that landscapes composed of a mosaic of forest and open habitats surrounding wetlands would hold the highest biodiversity of these species

    A simple landscape design framework for biodiversity conservation

    No full text
    Local government planning agencies play an important role in conserving biodiversity in human-altered landscapes. Such agencies frequently have a limited knowledge of wildlife biology and few resources to carry out research, and therefore require simple, practical guidelines for biodiversity conservation. We propose a landscape design framework for biodiversity conservation that is sequential, prescriptive, and supported by current landscape ecological science. Unlike existing guidelines, our framework can be implemented in any given landscape using only land cover data and it explicitly considers constraints on land use planning. The steps of our framework, in the order in which they should be implemented are: (1) select land cover data and decide which land cover classes constitute unaltered or altered land covers; (2) list the constraints on land use planning (e.g., economic, social) that exist for the landscape (3) maximize the total amount and diversity of unaltered land cover, especially near water; (4) minimize human disturbance within altered land cover, especially near water; and (5) aggregate altered land covers associated with high-intensity land uses, especially away from water. We illustrate the utility of our approach by applying it to a hypothetical landscape and comparing the outcome to those from the application of traditional ecological guidelines to inform land use planning

    Aligned carbon nanotube reinforced high performance polymer composites with low erosive wear

    No full text
    The erosive wear behaviour of epoxy composites reinforced with aligned, as-produced carbon nanotube (CNT) films was investigated. The CNT film composites were fabricated in two different configurations, where the unidirectional (0°) and bi-directional (0°/90°) aligned CNT films were exposed to the particle stream. Results have shown that the unidirectional (0°) CNT film/epoxy composite exhibit superior erosive wear resistance compared to the unidirectional (0°) carbon fibre reinforced epoxy composite. Furthermore, the bi-directional (0°/90°) CNT film/epoxy composite shows even better resistance to erosion compared to the unidirectional (0°) CNT film/epoxy composite due to additional impact energy absorption resulted from CNT networks. Scanning Electron Microscopy (SEM) provides further insight into the erosive wear mechanisms of CNT film composites at different impingement angles. This work has successfully introduced aligned as-produced CNT films fabricating epoxy composites using traditional composite manufacturing processes with low erosive wear and high electrical performance which deliver potential for engineering applications
    corecore