9,287 research outputs found
Optical deep space communication via relay satellite
The possible use of an optical for high rate data transmission from a deep space vehicle to an Earth-orbiting relay satellite while RF links are envisioned for the relay to Earth link was studied. A preliminary link analysis is presented for initial sizing of optical components and power levels, in terms of achievable data rates and feasible range distances. Modulation formats are restricted to pulsed laser operation, involving bot coded and uncoded schemes. The advantage of an optical link over present RF deep space link capabilities is shown. The problems of acquisition, pointing and tracking with narrow optical beams are presented and discussed. Mathematical models of beam trackers are derived, aiding in the design of such systems for minimizing beam pointing errors. The expected orbital geometry between spacecraft and relay satellite, and its impact on beam pointing dynamics are discussed
Global analysis of muon decay measurements
We have performed a global analysis of muon decay measurements to establish
model-independent limits on the space-time structure of the muon decay matrix
element. We find limits on the scalar, vector and tensor coupling of right- and
left-handed muons to right- and left-handed electrons. The limits on those
terms that involve the decay of right-handed muons to left-handed electrons are
more restrictive than in previous global analyses, while the limits on the
other non-standard model interactions are comparable. The value of the Michel
parameter eta found in the global analysis is -0.0036 \pm 0.0069, slightly more
precise than the value found in a more restrictive analysis of a recent
measurement. This has implications for the Fermi coupling constant G_F.Comment: 5 pages, 3 table
Computing Matveev's complexity via crystallization theory: the boundary case
The notion of Gem-Matveev complexity has been introduced within
crystallization theory, as a combinatorial method to estimate Matveev's
complexity of closed 3-manifolds; it yielded upper bounds for interesting
classes of such manifolds. In this paper we extend the definition to the case
of non-empty boundary and prove that for each compact irreducible and
boundary-irreducible 3-manifold it coincides with the modified Heegaard
complexity introduced by Cattabriga, Mulazzani and Vesnin. Moreover, via
Gem-Matveev complexity, we obtain an estimation of Matveev's complexity for all
Seifert 3-manifolds with base and two exceptional fibers and,
therefore, for all torus knot complements.Comment: 27 pages, 14 figure
Resonant electron heating and molecular phonon cooling in single C junctions
We study heating and heat dissipation of a single \c60 molecule in the
junction of a scanning tunneling microscope (STM) by measuring the electron
current required to thermally decompose the fullerene cage. The power for
decomposition varies with electron energy and reflects the molecular resonance
structure. When the STM tip contacts the fullerene the molecule can sustain
much larger currents. Transport simulations explain these effects by molecular
heating due to resonant electron-phonon coupling and molecular cooling by
vibrational decay into the tip upon contact formation.Comment: Accepted in Phys. Rev. Let
Calculating the 3D magnetic field of ITER for European TBM studies
The magnetic perturbation due to the ferromagnetic test blanket modules
(TBMs) may deteriorate fast ion confinement in ITER. This effect must be
quantified by numerical studies in 3D. We have implemented a combined finite
element method (FEM) -- Biot-Savart law integrator method (BSLIM) to calculate
the ITER 3D magnetic field and vector potential in detail. Unavoidable geometry
simplifications changed the mass of the TBMs and ferritic inserts (FIs) up to
26%. This has been compensated for by modifying the nonlinear ferromagnetic
material properties accordingly. Despite the simplifications, the computation
geometry and the calculated fields are highly detailed. The combination of
careful FEM mesh design and using BSLIM enables the use of the fields
unsmoothed for particle orbit-following simulations. The magnetic field was
found to agree with earlier calculations and revealed finer details. The vector
potential is intended to serve as input for plasma shielding calculations.Comment: In proceedings of the 28th Symposium on Fusion Technolog
How unique is the Asymptotic Normalisation Coefficient (ANC) method?
The asymptotic normalisation coefficients (ANC) for the vertex B
Be + p is deduced from a set of different proton transfer reactions at
different energies. This set should ensure the peripheral character of the
reaction and availability of data for the elastic channels. The problems
associated with the characteristics of the data and the analysis are discussed.
For a subgroup of the set of available data, the uniqueness property of the
extracted ANC is fulfilled. However, more measurements are needed before a
definite conclusion can be drawn.Comment: 19 pages, 11 figures, to be published in Phys Rev
Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors
A photon-number-resolving detector based on a four-element superconducting
nanowire single photon detector is demonstrated to have sub-30-ps resolution in
measuring the arrival time of individual photons. This detector can be used to
characterize the photon statistics of non-pulsed light sources and to mitigate
dead-time effects in high-speed photon counting applications. Furthermore, a
25% system detection efficiency at 1550 nm was demonstrated, making the
detector useful for both low-flux source characterization and high-speed
photon-counting and quantum communication applications. The design, fabrication
and testing of this detector are described, and a comparison between the
measured and theoretical performance is presented.Comment: 13 pages, 5 figure
Scattering of Be and B and the astrophysical S factor
Measurements of scattering of Be at 87 MeV on a melamine (CNH) target and of B at 95 MeV on C were performed. For Be
the angular range was extended over previous measurements and monitoring of the
intensity of the radioactive beam was improved. The measurements allowed us to
check and improve the optical model potentials used in the incoming and
outgoing channels for the analysis of existing data on the proton transfer
reaction N(Be,B)C. The resultslead to an updated
determination of the asymptotic normalization coefficient for the virtual decay
B Be + . We find a slightly larger value,
fm, for the melamine target. This
implies an astrophysical factor, eVb, for the
solar neutrino generating reaction Be(,)B.Comment: 7 pages, 4 figure
Defining the role of dexmedetomidine in the prevention of delirium in the intensive care unit (ICU)
Dexmedetomidine is a highly selective α2 agonist used as a sedative agent. It also provides anxiolysis and sympatholysis without significant respiratory compromise or delirium. We conducted a systematic review to examine whether sedation of patients in the intensive care unit (ICU) with dexmedetomidine was associated with a lower incidence of delirium as compared to other nondexmedetomidine sedation strategies. A search of PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews yielded only three trials from 1966 through April 2015 that met our predefined inclusion criteria and assessed dexmedetomidine and outcomes of delirium as their primary endpoint. The studies varied in regard to population, comparator sedation regimen, delirium outcome measure, and dexmedetomidine dosing. All trials are limited by design issues that limit our ability definitively to conclude that dexmedetomidine prevents delirium. Evidence does suggest that dexmedetomidine may allow for avoidance of deep sedation and use of benzodiazepines, factors both observed to increase the risk for developing delirium. Our assessment of currently published literature highlights the need for ongoing research to better delineate the role of dexmedetomidine for delirium prevention
- …