7 research outputs found

    LigAdvisor: A versatile and user-friendly web-platform for drug design

    Get PDF
    Although several tools facilitating in silico drug design are available, their results are usually difficult to integrate with publicly available information or require further processing to be fully exploited. The rational design of multi-target ligands (polypharmacology) and the repositioning of known drugs towards unmet therapeutic needs (drug repurposing) have raised increasing attention in drug discovery, although they usually require careful planning of tailored drug design strategies. Computational tools and data-driven approaches can help to reveal novel valuable opportunities in these contexts, as they enable to efficiently mine publicly available chemical, biological, clinical, and disease-related data. Based on these premises, we developed LigAdvisor, a data-driven webserver which integrates information reported in DrugBank, Protein Data Bank, UniProt, Clinical Trials and Therapeutic Target Database into an intuitive platform, to facilitate drug discovery tasks as drug repurposing, polypharmacology, target fishing and profiling. As designed, LigAdvisor enables easy integration of similarity estimation results with clinical data, thereby allowing a more efficient exploitation of information in different drug discovery contexts. Users can also develop customizable drug design tasks on their own molecules, by means of ligand- and target-based search modes, and download their results. LigAdvisor is publicly available at https://ligadvisor.unimore.it/

    The Italian National Registry for FSHD: an enhanced data integration and an analytics framework towards Smart Health Care and Precision Medicine for a rare disease

    Get PDF
    Background: The Italian Clinical network for FSHD (ICNF) has established the Italian National Registry for FSHD (INRF), collecting data from patients affected by Facioscapulohumeral dystrophy (FSHD) and their relatives. The INRF has gathered data from molecular analysis, clinical evaluation, anamnestic information, and family history from more than 3500 participants. Methods: A data management framework, called Mediator Environment for Multiple Information Sources (MOMIS) FSHD Web Platform, has been developed to provide charts, maps and search tools customized for specific needs. Patients’ samples and their clinical information derives from the Italian Clinical network for FSHD (ICNF), a consortium consisting of fourteen neuromuscular clinics distributed across Italy. The tools used to collect, integrate, and visualize clinical, molecular and natural history information about patients affected by FSHD and their relatives are described. Results: The INRF collected the molecular data regarding FSHD diagnosis conducted on 7197 subjects and identified 3362 individuals carrying a D4Z4 Reduced Allele (DRA): 1634 were unrelated index cases. In 1032 cases the molecular testing has been extended to 3747 relatives, 1728 carrying a DRA. Since 2009 molecular analysis has been accompanied by clinical evaluation based standardized evaluation protocols. In the period 2009–2020, 3577 clinical forms have been collected, 2059 follow the Comprehensive Clinical Evaluation form (CCEF). The integration of standardized clinical information and molecular data has made possible to demonstrate the wide phenotypic variability of FSHD. The MOMIS (Mediator Environment for Multiple Information Sources) data integration framework allowed performing genotype–phenotype correlation studies, and generated information of medical importance either for clinical practice or genetic counseling. Conclusion: The platform implemented for the FSHD Registry data collection based on OpenClinica meets the requirement to integrate patient/disease information, as well as the need to adapt dynamically to security and privacy concerns. Our results indicate that the quality of data collection in a multi-integrated approach is fundamental for clinical and epidemiological research in a rare disease and may have great value in allowing us to redefine diagnostic criteria and disease markers for FSHD. By extending the use of the MOMIS data integration framework to other countries and the longitudinal systematic collection of standardized clinical data will facilitate the understanding of disease natural history and offer valuable inputs towards trial readiness. This approach is of high significance to FSHD medical community and also to rare disease research in general

    Scaling up Record-level Matching Rules

    No full text
    Record-level matching rules are chains of similarity join pred-icates on multiple attributes employed to join records that refer to the same real-world object when an explicit foreign key is not available on the data sets at hand. They are widely employed by data scientists and practitioners that work with data lakes, open data, and data in the wild. In this work we present a novel technique that allows to efficiently exe-cute record-level matching rules on parallel and distributed systems and demonstrate its efficiency on a real-wold data set

    F′-centre formation in additively coloured NaF:Li

    No full text

    Three-dimensional Entity Resolution with JedAI

    No full text
    Entity Resolution (ER) is the task of detecting different entity profiles that describe the same real-world objects. To facilitate its execution, we have developed JedAI, an open-source system that puts together a series of state-of-the-art ER techniques that have been proposed and examined independently, targeting parts of the ER end-to-end pipeline. This is a unique approach, as no other ER tool brings together so many established techniques. Instead, most ER tools merely convey a few techniques, those primarily developed by their creators. In addition to democratizing ER techniques, JedAI goes beyond the other ER tools by offering a series of unique characteristics: (i) It allows for building and benchmarking millions of ER pipelines. (ii) It is the only ER system that applies seamlessly to any combination of structured and/or semi-structured data. (iii) It constitutes the only ER system that runs seamlessly both on stand-alone computers and clusters of computers — through the parallel implementation of all algorithms in Apache Spark. (iv) It supports two different end-to-end workflows for carrying out batch ER (i.e., budget-agnostic), a schema-agnostic one based on blocks, and a schema-based one relying on similarity joins. (v) It adapts both end-to-end workflows to budget-aware (i.e., progressive) ER. We present in detail all features of JedAI, stressing the core characteristics that enhance its usability, and boost its versatility and effectiveness. We also compare it to the state-of-the-art in the field, qualitatively and quantitatively, demonstrating its state-of-the-art performance over a variety of large-scale datasets from different domains. The central repository of the JedAI's code base is here: https://github.com/scify/JedAIToolkit. A video demonstrating the JedAI's Web application is available here: https://www.youtube.com/watch?v=OJY1DUrUAe8. © 2020 Elsevier Lt

    Three-dimensional Entity Resolution with JedAI

    No full text
    Entity Resolution (ER) is the task of detecting different entity profiles that describe the same real-world objects. To facilitate its execution, we have developed JedAI, an open-source system that puts together a series of state-of-the-art ER techniques that have been proposed and examined independently, targeting parts of the ER end-to-end pipeline. This is a unique approach, as no other ER tool brings together so many established techniques. Instead, most ER tools merely convey a few techniques, those primarily developed by their creators. In addition to democratizing ER techniques, JedAI goes beyond the other ER tools by offering a series of unique characteristics: (i) It allows for building and benchmarking millions of ER pipelines. (ii) It is the only ER system that applies seamlessly to any combination of structured and/or semi-structured data. (iii) It constitutes the only ER system that runs seamlessly both on stand-alone computers and clusters of computers \u2014 through the parallel implementation of all algorithms in Apache Spark. (iv) It supports two different end-to-end workflows for carrying out batch ER (i.e., budget-agnostic), a schema-agnostic one based on blocks, and a schema-based one relying on similarity joins. (v) It adapts both end-to-end workflows to budget-aware (i.e., progressive) ER. We present in detail all features of JedAI, stressing the core characteristics that enhance its usability, and boost its versatility and effectiveness. We also compare it to the state-of-the-art in the field, qualitatively and quantitatively, demonstrating its state-of-the-art performance over a variety of large-scale datasets from different domains. The central repository of the JedAI's code base is here: https://github.com/scify/JedAIToolkit. A video demonstrating the JedAI's Web application is available here: https://www.youtube.com/watch?v=OJY1DUrUAe8
    corecore