11 research outputs found

    Planet Hunters X: Searching for Nearby Neighbors of 75 Planet and Eclipsing Binary Candidates from the K2 Kepler Extended Mission

    Get PDF
    We present high-resolution observations of a sample of 75 K2 targets from Campaigns 1-3 using speckle interferometry on the Southern Astrophysical Research (SOAR) telescope and adaptive optics (AO) imaging at the Keck II telescope. The median SOAR II-band and Keck KsK_s-band detection limits at 1" were ΔmI=4.4\Delta m_{I}=4.4~mag and ΔmKs=6.1\Delta m_{K_s}=6.1~mag, respectively. This sample includes 37 stars likely to host planets, 32 targets likely to be eclipsing binaries (EBs), and 6 other targets previously labeled as likely planetary false positives. We find nine likely physically bound companion stars within 3" of three candidate transiting exoplanet host stars and six likely EBs. Six of the nine detected companions are new discoveries; one of the six, EPIC 206061524, is associated with a planet candidate. Among the EB candidates, companions were only found near the shortest period ones (P<3P<3 days), which is in line with previous results showing high multiplicity near short-period binary stars. This high-resolution data, including both the detected companions and the limits on potential unseen companions, will be useful in future planet vetting and stellar multiplicity rate studies for planets and binaries.Comment: Accepted in A

    Planet Hunters. VIII. Characterization of 41 Long-Period Exoplanet Candidates from Kepler Archival Data

    Get PDF
    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0-Q17). Among them, 17 exhibit only one transit, 14 have two visible transits and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1-3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4". We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. (2014). We validate 7 planet candidates that have planet confidence over 0.997 (3-{\sigma} level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with 4 transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%-33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hours, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.Comment: Published on ApJ, 815, 127 Notations of validated planets are changed in accordance with naming convention of NASA Exoplanet Archiv

    Planet Hunters X: Searching for nearby neighbors of 75 planet and eclipsing binary candidates from the K2 Kepler extended mission

    Get PDF
    We present high resolution observations of a sample of 75 K2 targets from Campaigns 1-3 using speckle interferometry on the Southern Astrophysical Research (SOAR) telescope and adaptive optics (AO) imaging at the Keck II telescope. The median SOAR II-band and Keck KsK_s-band detection limits at 1'' were ΔmI=4.4\Delta m_{I}=4.4 mag and ΔmKs=6.1\Delta m_{K_s}=6.1 mag, respectively. This sample includes 37 stars likely to host planets, 32 targets likely to be EBs, and 6 other targets previously labeled as likely planetary false positives. We find nine likely physically bound companion stars within 3'' of three candidate transiting exoplanet host stars and six likely eclipsing binaries (EB). Six of the nine detected companions are new discoveries, one of them associated with a planet candidate (EPIC 206061524). Among the EB candidates, companions were only found near the shortest period ones (P<3 days), which is in line with previous results showing high multiplicity near short-period binary stars. This high resolution data, including both the detected companions and the limits on potential unseen companions, will be useful in future planet vetting and stellar multiplicity rate studies for planets and binaries
    corecore