168 research outputs found

    Longevity of 68 Species of Drosophila

    Get PDF
    Author Institution: Department of Biological Sciences, Bowling Green State UniversityAdult longevity of Drosophila is dependent upon many factors. In this study the differences in longevity caused by species, strain, sex, and mating status were examined for 68 species (89 strains) belonging to the D. obscura, melanogaster, and willistoni species groups. Both inter- and intra-specific differences in adult longevity were observed. In most species studied, females lived longer than males. In general, the longevity of unmated females exceeded that of mated ones, while the longevity of mated males was greater than that of unmated ones

    Social cognition in schizophrenia: factor structure, clinical and functional correlates

    Get PDF
    Social cognition is consistently impaired in people with schizophrenia, separable from general neurocognition, predictive of real-world functioning, and amenable to psychosocial treatment. Few studies have empirically examined its underlying factor structure

    Real measurements and Quantum Zeno effect

    Get PDF
    In 1977, Mishra and Sudarshan showed that an unstable particle would never be found decayed while it was continuously observed. They called this effect the quantum Zeno effect (or paradox). Later it was realized that the frequent measurements could also accelerate the decay (quantum anti-Zeno effect). In this paper we investigate the quantum Zeno effect using the definite model of the measurement. We take into account the finite duration and the finite accuracy of the measurement. A general equation for the jump probability during the measurement is derived. We find that the measurements can cause inhibition (quantum Zeno effect) or acceleration (quantum anti-Zeno effect) of the evolution, depending on the strength of the interaction with the measuring device and on the properties of the system. However, the evolution cannot be fully stopped.Comment: 3 figure

    Accelerating, hyperaccelerating, and decelerating networks

    Get PDF
    Many growing networks possess accelerating statistics where the number of links added with each new node is an increasing function of network size so the total number of links increases faster than linearly with network size. In particular, biological networks can display a quadratic growth in regulator number with genome size even while remaining sparsely connected. These features are mutually incompatible in standard treatments of network theory which typically require that every new network node possesses at least one connection. To model sparsely connected networks, we generalize existing approaches and add each new node with a probabilistic number of links to generate either accelerating, hyperaccelerating, or even decelerating network statistics in different regimes. Under preferential attachment for example, slowly accelerating networks display stationary scale-free statistics relatively independent of network size while more rapidly accelerating networks display a transition from scale-free to exponential statistics with network growth. Such transitions explain, for instance, the evolutionary record of single-celled organisms which display strict size and complexity limits

    Quantum Zeno effect and parametric resonance in mesoscopic physics

    Full text link
    As a realization of the quantum Zeno effect, we consider electron tunneling between two quantum dots with one of the dots coupled to a quantum point contact detector. The coupling leads to decoherence and to the suppression of tunneling. When the detector is driven with an ac voltage, a parametric resonance occurs which strongly counteracts decoherence. We propose a novel experiment with which it is possible to observe both the quantum Zeno effect and the parametric resonance in electric transport.Comment: 4 pages, 2 figure

    Color Variability of the Blazar AO 0235+16

    Full text link
    Multicolor (UBVRIJHK) observations of the blazar AO 0235+16 are analyzed. The light curves were compiled at the Turin Observatory from literature data and the results of observations obtained in the framework of the WEBT program (http://www.to.astro/blazars/webt/). The color variability of the blazar was studied in eight time intervals with a sufficient number of multicolor optical observations; JHK data are available for only one of these. The spectral energy distribution (SED) of the variable component remained constant within each interval, but varied strongly from one interval to another. After correction for dust absorption, the SED can be represented by a power law in all cases, providing evidence for a synchrotron nature of the variable component. We show that the variability at both optical and IR wavelengths is associated with the same variable source.Comment: 11 pages, 9 figures, 4 tables, accepted for publication in Astronomy Report

    Continuous quantum measurement of a double dot

    Full text link
    We consider the continuous measurement of a double quantum dot by a weakly coupled detector (tunnel point contact nearby). While the conventional approach describes the gradual system decoherence due to the measurement, we study the situation when the detector output is explicitly recorded that leads to the opposite effect: gradual purification of the double-dot density matrix. Nonlinear Langevin equation is derived for the random evolution of the density matrix which is reflected and caused by the stochastic detector output. Gradual collapse, gradual purification, and quantum Zeno effect are naturally described by the equation. We also discuss the possible experiments to confirm the theory.Comment: Extended version (6 pages) of quant-ph/9807051, published in PR

    Macroscopic quantum damping in SQUID rings

    Get PDF
    The measurement process is introduced in the dynamics of Josephson devices exhibiting quantum behaviour in a macroscopic degree of freedom. The measurement is shown to give rise to a dynamical damping mechanism whose experimental observability could be relevant to understand decoherence in macroscopic quantum systems.Comment: 7 Pages; Plain REVTeX; 3 Figures available upon request; to be published in Phys. Lett. A 229, 23 (1997
    corecore