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Abstract

Background

Increased biological complexity is generally associated with the addition of new 

genetic information, which must be integrated into the existing regulatory network that 

operates within the cell.  General arguments on network control, as well as several recent 

genomic observations, indicate that regulatory gene number grows disproportionally fast with 

increasing genome size.

Results

We present two models for the growth of regulatory networks.  Both predict that the 

number of transcriptional regulators will scale quadratically with total gene number.  This 

appears to be in good quantitative agreement with genomic data from 89 fully sequenced

prokaryotes.  Moreover, the empirical curve predicts that any new non-regulatory gene will 

be accompanied by more than one additional regulator beyond a genome size of about 

20,000 genes, within a factor of two of the observed ceiling.

Conclusions

Our analysis places transcriptional regulatory networks in the class of accelerating 

networks.  We suggest that prokaryotic complexity may have been limited throughout 

evolution by regulatory overhead, and conversely that complex eukaryotes must have 

bypassed this constraint by novel strategies.
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Background

An increase in organism complexity or functionality can be achieved by adding new 

functional genes, and/or by adding new regulatory regimes.  Each case requires an 

expansion of the regulatory network to integrate new capabilities with existing ones.  The 

ability to access more genes (or operons, i.e., co-regulated functional modules of genes) 

therefore not only involves a linear increase in regulator number, but also enforces an 

additional expansion of higher order regulation, if the system as a whole is to be coordinated 

and not descend into chaotic space.  A fraction of the regulators (those that are not 

constitutively expressed) will themselves require regulation, and the impact of new gene 

products on the biology of the cell will need to be integrated by additional input into the 

existing regulatory framework.  For example, if a new operon dealing with the metabolism of 

a particular sugar is introduced into the cell, not only is a new regulator that recognizes this 

sugar required (or at least advantageous), but the effect of the activity of this operon has to 

be coordinated with the metabolism of other substrates that feed into the cell’s energy flux, 

as exemplified by the lac operon.  A growing body of literature supports the notion that 

increases in complexity arise indeed from progressively more elaborate regulation of gene 

expression [1].  These considerations suggest that the numbers of regulators (or 

combinations thereof) must generally scale faster than linearly with the number of genes.

In agreement with this general prediction, it has been shown that regulatory gene 

number in prokaryotic genomes grows disproportionally fast [2-5].  In particular, a recent 

study analyzed the scaling of gene counts nc for each of 44 functional protein categories in 

relation to the total number of genes n, across 64 bacterial genomes [5].  Surprisingly, almost 

all categories showed a power law dependence on total gene count, nc~nα.  Transcriptional 

regulators were the fastest growing class, with an exponent α of approximately 2 (1.87±0.13 
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for “transcription regulation” and 2.07±0.21 for “two component systems”).  As linear 

increases in regulator numbers can theoretically provide a combinatorially explosive number 

of regulatory regimes, this observation suggests that the number of required regulatory 

states is increasing faster than the number of meaningful combinations of regulatory factors 

[5], although the upper limits on the size of genetic networks that may be imposed by this 

regulatory expansion were not considered.

Studies of such ‘accelerating growth’ networks have recently been prompted by 

observations that the Internet grows by adding links more quickly than sites [6].  However, 

the relative change over time is small and the Internet appears to remain scale free and well 

characterized by stationary statistics [7].  Similarly, the average number of links per substrate 

in metabolic networks of organisms appears to increase linearly with substrate number [8], 

while the average number of links of scientific collaboration networks increases linearly over 

time [9].  These observations have motivated models where accelerating growth in link 

number generates nonstationary statistics from random to scale-free to regular connectivity 

at particular network sizes, as the growing number of links gradually saturates the network 

and links all nodes together [10] (for an overview, see [11, 12]).  If biological regulatory 

networks indeed feature accelerating growth, they will be characterized by sparse 

connectivity at low gene numbers.  If these networks, optimized by evolution in the sparse 

regime, are unable to make the transition to the densely connected regime, the evolutionary 

record would show a strict size limit at some maximum network size.  This is exactly what is 

observed: prokaryotic gene numbers appear restricted to below approximately 10,000 genes 

or a genome size of approximately 10 megabases [13].

Below, we present mathematical arguments that substantiate our intuitive expectation 

of accelerated growth of regulatory networks; and we confirm that our predictions are in good 
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agreement with experimental results.  We further calculate a rough estimate of the size limit 

that this accelerated growth of regulatory networks may impose on prokaryotic genomes.

We wish to point out that both models outlined below rely on a number of plausible, yet 

unproven assumptions.   These models will undoubtedly need adjustments once more 

detailed information on the evolutionary mechanism of genome expansion is available.   

While they will not encapsulate all biological details correctly, the models may serve as 

illustrations of the kind of mechanisms that might cause the observed accelerating growth of 

regulatory networks.

Results and Discussion

Model I: Regulatory integration of new genes

We can derive a specific prediction of the relationship between regulator numbers R

and the numbers of genes N from simple assumptions about the evolution of regulatory 

networks.  Consider a new gene that is added to the genome, e.g., by gene duplication or 

horizontal gene transfer.  Initially, the new gene will be free to drift in its pattern of 

interactions with other genes.  The available space of regulatory interactions that it can 

explore is the full set of genes already present in the genome.  This evolutionary search is 

undirected.  Thus, a priori, each regulatory interaction of the new gene with any previous 

gene has the same probability (termed p) to be selectively favorable.  For each gene added 

to a genome containing N genes, we thus expect p N interactions to become fixed.  Some 

genes may be integrated into the regulatory network only via existing regulatory factors.

However, we expect that some of the new genes have to be regulated specifically; thus, a 

fraction v of the new interactions will correspond to new regulatory factors.  In sum, adding 

one new gene results in the fixation of ∆R = v p N new regulators, with v p = c constant; or 
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equivalently, adding ∆N new genes results in ∆R = c N ∆N new regulators.  Some (but 

perhaps only a minority) of the ∆R new regulators will themselves require regulation [14], and 

reciprocally the activities of the newly regulated functional units will have to be integrated 

back into the regulatory network of the cell, both leading to additional higher order terms 

dependent on the degree of required connectivity of the system as a whole.  In a first 

approximation, we will ignore these; their inclusion will further accelerate regulatory network 

growth.

Starting from a hypothetical empty genome and adding one gene at a time, we can 

estimate the total number of regulators as a sum over all ∆R terms:

R = cn =
cN(N +1)

2
≈

n= 0

N∑ c

2
N 2 (1) 

Thus, the number of regulators R scales approximately quadratically with increasing gene 

number.  As prokaryotic operon size decreases only slowly with increasing genome size [15], 

N in Eq.1 can also be interpreted as operon number, which simply changes the scaling factor 

c.  In eukaryotes, N includes the numbers of different splice variants.

Model II: Homology based interactions of new regulators

An alternative theoretical approach focuses not on the regulation required by newly 

added genes, but on the transcriptional regulators themselves.   Any given transcription 

factor, which is newly added to a genome, will be retained under one condition: that it 

establishes fitness enhancing interaction with potential binding sites present in the genome.

We assume that the nucleotide sequences of potential binding sites are 

approximately random.  The probability of finding or developing a match to the given 

transcription factor specificity among potential transcription factor binding sequences is then 
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proportional to the total amount of such sequences.  This scaling is analogous to that known 

from sequence similarity searches, such as BLAST or FASTA: the probability of finding a 

random sequence match scales linearly with the length of the target sequence.

The total amount of potential transcription factor binding sequences will scale linearly 

with the number of genes.  Thus, the average number of matches between our new 

transcription factor and potential binding sequences scales linearly with total gene number.  If 

the evolutionary search is undirected, i.e., each interaction is a priori equally likely to provide 

a fitness benefit, then the probability of retaining a newly added transcription factor also 

scales linearly with gene number: ∆R = c’N, again leading to Equation (1).

Genomic analysis 

We then proceeded to examine the actual relationship between the numbers of 

transcriptional regulators (defined here as those utilizing sequence specific binding to DNA or

RNA) and genome size in prokaryotes.  We analysed 89 completely sequenced bacterial and 

archaeal genomes, ranging from Mycoplasma genitalium (containing just 480 genes) to 

Bradyrhizobium japonicum (8317 genes), thereby spanning almost the entire range of 

observed genome sizes.  For each genome, we estimated the number of regulatory proteins 

by searching all genes for matches to Pfam profiles of protein domains [16] with known 

regulatory or signalling functions and/or known to be involved in DNA or RNA binding.  

Although all of these genomes contain many genes with unknown function, some of which 

may have potentially unidentified regulatory domains, this should not unduly bias the analysis 

unless the proportion of unidentified regulators varies with genome size, which appears 

unlikely.

In agreement with the predictions from the above models, and in agreement with 

previous studies [2, 5], we find the increase of regulatory genes with total gene number to be 
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most consistent with a quadratic function:  the double logarithmic plot in Fig. 1 is well 

described by a straight line with slope 1.96 (95%-confidence interval 1.81 - 2.11, r2=0.88), 

giving the empirical relationship R = 0.0000163 N 1.96.  The fitted curve is not significantly 

different from R = 0.0000120 N2.  Importantly, the relationship remains consistent with a 

quadratic even when more or less stringent definitions of regulatory protein domains are 

employed, or when all proteins annotated as regulators are included (data not shown; see 

also [5]).  While the size range of fully sequenced prokaryotic genomes spans hardly more 

than one order of magnitude, the high r2 value together with the tight confidence interval for 

the exponent are good evidence that the true scaling behaviour is a higher order function (i.e. 

higher than linear), and most likely to be close to a quadratic.

From Fig. 1, it is evident that regulatory networks are sparsely connected.  In E. coli, 

each transcriptional regulator targets on average 5 operons [17], corresponding to 

approximately 8.5 genes [15].  If this relation can be extrapolated to other genomes, Fig. 1 

suggests that each gene is connected to on average C = 0.06% of all other genes (see 

Methods).

Previous studies of the transcriptional network in Escherichia coli have found a modular 

structure [17, 18]: densely co-regulated sets of genes form partially overlapping functional 

modules, which are controlled by global regulators.  If new genes explored regulatory 

interactions predominantly within modules that are sparsely connected into the rest of the 

network, then this would give a largely linear relationship between R and N, with a small 

quadratic term for module interconnectivity.  The fact that the relationship between R and N

appears to be close to a pure quadratic (Fig. 1) then suggests that new genes explore 

regulatory interactions with a significant proportion of the genome, not just within modules.   

This is consistent with the finding that modules do not represent closed systems: many 
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genes are regulated not only by within-module transcription factors, but also by factors that 

control genes across several modules [17].

Regulatory networks

The observed increase of average link number with network size means that 

transcription networks feature accelerating growth in connectivity, and hence nonstationary 

(or size dependent) statistics.  This constitutes a significant difference from the more usual 

classes of exponential or scale-free networks with stationary (size independent) statistics.  

The non-linear relationship predicted in Eq.1 and confirmed in Fig. 1 differs from the growth 

behavior described for previously studied metabolic and man-made networks, which largely 

feature non-accelerating growth and stationary statistics [6, 8, 9, 19, 20].  This may be a 

consequence of fundamental differences: the Internet, the World Wide Web, and scientific 

collaboration networks, among other generally studied networks, have not been subject to 

selection for specific dynamical functions, as opposed to gene regulatory networks [21].  

While metabolic networks are of course related to the regulatory networks governing them 

(and are indeed optimized for a closely related function), they are dominated by the most 

highly connected substrates (such as water, ATP, and ADP) [8]; links involving such 

ubiquitous reactants contain little information on network control.

The scaling law in Eq. 1 is based on two simple suppositions: that each new gene 

explores a space of possible interactions which is proportional in size to the total number of 

genes; and that a priori each new interaction is equally likely to lead to the fixation of a new 

regulator.  We can develop this into a simple explicit network model by presuming that most 

regulatory interactions are between non-regulatory genes (which for prokaryotes may be a 

reasonable first-order approximation [18]).  These genes form the nodes of the network, 

while the links between nodes are regulatory interactions.  In this case, total gene number N
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in Eq. 1 is replaced by the number of non-regulatory genes S.  If we presume that new 

regulatory genes explore outbound regulatory interactions with all existing nodes with equal 

probability, then this means that the inbound regulatory links to regulated genes are 

exponentially distributed  and described by a random Erdös-Rényi style compact distribution 

network [22].  Interestingly, it has been shown that the number of transcriptional regulators 

controlling one gene follows an exponential distribution in E. coli [17], as is expected in 

Erdös-Rényi networks [22].  Existing regulatory networks are of course far from random, but 

are highly optimized by natural selection.  However, if selective forces affect all nodes with 

equal probability, then the resulting network topology resembles that of a random network.

Limited complexity of prokaryotes

Regardless of the exact nature of the distributions, the non-linear scaling confirmed in 

Fig. 1 places prokaryote transcriptional networks firmly in the class of accelerating networks.  

Regulators are the fastest growing class of proteins [5], and their scaling behaviour has 

profound implications for the ability of prokaryotes to evolve more complex genetic programs.  

In particular, the accelerating growth of the regulatory overhead must eventually impose an 

inherent upper size limit on prokaryote genomes, which we can roughly estimate as being at 

the point where functional gain is outweighed by regulatory cost, as follows.  The total gene 

number N is composed of both regulatory genes R and non -regulatory genes S, and thus ∆N

= ∆R + ∆S for any increase in genome size ∆N.  In small genomes, growth occurs with the 

addition of many more non-regulatory than regulatory genes, and ∆R << ∆S.  However, as 

genomes enlarge, there comes a point where each new non-regulatory gene will be 

accompanied by the addition of more than one regulatory gene, ∆R > ∆S.  Satisfaction of this 

constraint roughly indicates when the required regulatory overhead outweighs the gains 

afforded by additional non-regulatory genes: genome expansion becomes inefficient.  From 
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∆R = c N ∆N (either inferred directly from Fig. 1, or from the derivation of Eq. 1, with c = 2.40 

× 10-5 from a fit with slope 2.00), we find that this regime is reached when c N > 1/2, or N > 

approximately 20,000 genes.  The latter figure is within a factor of two of the observed ceiling 

of around 10,000 genes in prokaryotes [13].  It  may also be noteworthy that the observed 

limit coincides with the point where the  number of operons equals the total number of 

regulatory interactions affecting them, where the latter is estimated as 5 x the number of 

regulators [17].  Regardless of the precise limit, the inescapable conclusion stemming from 

accelerated regulatory network growth is that there is a limit to genome size imposed by 

regulatory overhead.  It may be more than coincidental that the predicted and observed limits 

are similar.

Our results then suggest that gene numbers and the complexity of prokaryotes may 

have been constrained by the architecture of their regulatory networks.  It is evident that 

prokaryotes have never reached the size and complexity of multicellular eukaryotes, whose 

genomes contain 14000-50000 individually regulated protein-coding genes [23-26], that are 

subject to alternative splicing to produce many more isoforms, in addition to large numbers of 

noncoding RNA genes [27].  The low complexity of prokaryotes has previously been 

attributed to biochemical or environmental factors, e.g., the type of energy metabolism or the 

absence of particular proteins such as cell-cell signaling proteins or homeobox proteins 

which are unique to higher eukaryotes.  However, such stratagems should have been 

available to prokaryotes; like eukaryotes, they have had over 4 billion years of evolutionary 

history in which to explore protein structural and chemical space, aided by lateral gene 

transfer.  It is also often assumed that the increased complexity of eukaryotes is a result of 

control systems which exploit the increased possibilities afforded by combinatorics of 

regulatory factors, and of the introduction of new levels of control.  However, it would not be 

difficult to imagine the evolution of larger cis-regulatory regions and new regulatory protein 
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recognition sites in prokaryotic genes.  Moreover, the introduction of new levels of control 

requires the introduction of new regulatory systems and pathways, so the regulatory load 

problem cannot be avoided in that way.

So how might the developmentally complex eukaryotes have bypassed this constraint?  

The only general way to relieve the problem is either to reduce the level of connectivity of the 

regulatory network (which is the opposite of what might be expected in a complex system), or 

to fundamentally change the nature of R, so that the numbers of regulatory factors may be 

expanded faster than the numbers of regulated proteins.  Given that noncoding RNA 

accounts for about 97% of all transcriptional output in humans [28], and that many complex 

genetic phenomena in higher organisms are RNA-directed [29], it seems likely that RNA 

(which is utilized only for a few specific functions in prokaryotes) has been co-opted by the 

eukaryotes to solve this problem, enabling the programming of large numbers of different cell 

states and developmental trajectories in complex organisms like humans [30].   The 

regulatory advantage of RNA is its ability to convey sequence-specific signals (like a zip code 

or bit string) to receptive targets, while requiring 1.5 orders of magnitude less genomic 

sequence and correspondingly lower metabolic costs than proteins [29, 31].

Conclusions

General arguments on the scaling of regulatory networks, as well as two alternative 

models, predict a faster than linear increase of transcriptional regulatory overhead with gene 

number.  This is confirmed by genomic data.  Both models and the empirical data are most 

consistent with a quadratic growth of transcription regulator number with total gene number.  

This links transcriptional networks to the emerging field of accelerating networks.  The 

observed non-linear scaling implies a limit on network growth, and therefore on genome size 
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and complexity, within any given regulatory architecture.  Our rough prediction of this limit 

lies within a factor of two of the biologically observed size limit of prokaryotes.  This 

implicates regulatory network structure as a defining feature distinguishing prokaryotes from 

complex eukaryotes.

Methods

Data mining

Profiles in Pfam [16] (http://pfam.wustl.edu) were identified that were DNA or RNA 

binding and either had known regulatory function or demonstrated sequence specific binding.  

Pfam was searched by keywords such as “DNA bind”, “RNA bind”, “regulator” and 

“transcription factor”.  In this way almost half of all Pfam profiles were examined (see 

Supplemental Table 1 for a list of included Pfam profiles).  Viral and Eukaryal profiles were 

included if the profiles fitted the above criteria.  TIG immunoglobulin-like domains were 

excluded as they bind substrates apart from DNA.

Complete, annotated genes were downloaded from NCBI [32].  hmmpfam from 

Hmmer 2.1.2 was used to identify all proteins that fit any of the selected Pfam profiles.  The 

expectation cutoff for a valid profile match was set at 10-4.  The results were parsed and 

counted using a Perl script.  A list of species, gene numbers, and regulator numbers is 

provided as Supplemental Table 2.   Graphs (not shown) using different definitions of 

regulatory proteins were also made using COG functional categories, subsets of the Pfam 

profiles in Supplemental Table 1 and functional classification from genome annotation.   All 

such graphs showed similar behaviours to Figure 1.



14

Connectivity

The average connectivity of genes was estimated as follows.  If on average each of R 

regulators connects to five operons, as is the case in E. coli [15], then one operon is 

accessed by 5R/(Nop) = 8R/N regulators (substituting the asymptotic relationship Nop≈ 0.6 × N

[17].  Each of these regulators is also linked to four other operons.  Assuming independence 

of the regulator connections, each gene in the original operon is therefore directly linked to 4 

× 8R/N other operons, or 4 × 8R/(N × 0.6) = 53R/N genes.  As a proportion of the total N, any 

one gene is therefore connected to  C = 53R/N2 other genes.  Substituting R/N2 as estimated 

from Fig. 1, this gives C = 0.06% (gene connectivity).

Acknowledgements

MJL acknowledges financial support by The Wellcome Trust.



15

References

1. Levine M, Tjian R: Transcription regulation and animal diversity. Nature 2003, 

424:147-151.

2. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, 

Hufnagle WO, Kowalik DJ, Lagrou M et al: Complete genome sequence of 

Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 

406:959-964.

3. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, 

Harris DE, Quail MA, Kieser H, Harper D et al: Complete genome sequence of the 

model actinomycete Streptomyces coelicolor A3(2). Nature 2002, 417:141-147.

4. Cases I, de Lorenzo V, Ouzounis CA: Transcription regulation and environmental 

adaptation in bacteria. Trends Microbiol 2003, 11:248-253.

5. van Nimwegen E: Scaling laws in the functional content of genomes. Trends Genet 

2003, 19:479-484.

6. Faloutsos M, Faloutsos P, Faloutsos C: On power-law relationships of the internet 

topology. In: Proceedings of ACM SIGCOMM.  vol. 29. Cambridge, MA: ACM; 1999: 

251-262.

7. Vazquez A, Pastor-Satorras R, Vespignani A: Large-scale topological and 

dynamical properties of the internet. Phys Rev E 2002, 6506:6130.

8. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL: The large-scale organization 

of metabolic networks. Nature 2000, 407:651-654.

9. Barabasi AL, Jeong H, Neda Z, Ravasz E, Schubert A, Vicsek T: Evolution of the 

social network of scientific collaborations. Physica A 2002, 311:590-614.



16

10. Dorogovtsev SN, Mendes JFF: Effect of the accelerating growth of 

communications networks on their structure. Phys Rev E 2001, 6302:5101.

11. Dorogovtsev SN, Mendes JFF: Evolution of networks. Adv Phys 2002, 51:1079-1187.

12. Albert R, Barabasi AL: Statistical mechanics of complex networks. Rev Mod Phys 

2002, 74:47-97.

13. Casjens S: The diverse and dynamic structure of bacterial genomes. Annu Rev 

Genet 1998, 32:339-377.

14. Babu MM, Teichmann SA: Evolution of transcription factors and of the gene 

regulatory network in Escherichia coli. Nucl Acid Res 2003, 31:1234-1244.

15. Cherry JL: Genome size and operon content. J Theor Biol 2003, 221:401-410.

16. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe 

KL, Marshall M, Sonnhammer EL: The Pfam protein families database. Nucl Acid 

Res 2002, 30:276-280.

17. Shen-Orr SS, Milo R, Mangan S, Alon U: Network motifs in the transcriptional 

regulation network of Escherichia coli. Nat Genet 2002, 31:64-68.

18. Thieffry D, Huerta AM, Perezrueda E, Colladovides J: From specific gene regulation 

to genomic networks - a global analysis of transcriptional regulation in 

Escherichia coli. Bioessays 1998, 20:433-440.

19. Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, 

Wiener J: Graph structure in the Web. Comput Netw 2000, 33:309-320.

20. Barabasi AL, Albert R: Emergence of scaling in random networks. Science 1999, 

286:509-512.

21. Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell 

biology. Nature 1999, 402:C47-C52.



17

22. Erdös P, Rényi A: On the evolution of random graphs. Publication of the 

Mathematical Institute of the Hungarian Academy of Science 1960, 5:17-61.

23. The C.elegans Sequencing Consortium: Genome sequence of the nematode 

C.elegans: A platform for investigating biology. Science 1998, 282:2012-2018.

24. International Human Genome Sequencing Consortium: Initial sequencing and 

analysis of the human genome. Nature 2001, 409:860-921.

25. Mouse Genome Sequencing Consortium: Initial sequencing and comparative 

analysis of the mouse genome. Nature 2002, 420:520-562.

26. The Arabidopsis Genome Initiative: Analysis of the genome sequence of the 

flowering plant Arabidopsis thaliana. Nature 2000, 408:796-815.

27. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, 

Saito R, Suzuki H et al: Analysis of the mouse transcriptome based on functional 

annotation of 60,770 full-length cDNAs. Nature 2002, 420:563-573.

28. Mattick JS: Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 

2001, 2:986-991.

29. Mattick JS, Gagen MJ: The evolution of controlled multitasked gene networks: the 

role of introns and other noncoding RNAs in the development of complex 

organisms. Mol Biol Evol 2001, 18:1611-1630.

30. Mattick JS: Challenging the dogma: the hidden layer of non-protein-coding RNAs 

in complex organisms. Bioessays 2003, 25:930-939.

31. Mattick JS: Introns - evolution and function. Curr Opin Genet Dev 1994, 4:823-831.

32. National Center for Biotechnology Information: Genomes 

[ftp://ftp.ncbi.nih.gov/genbank/genomes]



18

Figure Legends

Figure 1

Double-logarithmic plot of transcriptional regulator number against total gene number for 

bacteria (green circles) and archaea (blue triangles).  The overall distribution is well 

described by a straight line with slope 1.96 (r2= 0.88, 95% confidence interval: 1.81 – 2.11), 

corresponding to a quadratic relationship between regulator number and genome size.  The 

inset shows the same data before log-transformation.

Description of additional data files

Croft_Suppl_Tab1.xls 

Format: MS Excel

Title: Pfam profiles of regulatory proteins

Description: Name and description of each Pfam profile used to identify transcriptional 

regulators in each genome.

Croft_Suppl_Tab2.xls 

Format: MS Excel

Title: Genomic data for bacteria and archaea

Description: Completely sequenced and annotated prokaryotes used for this study, 

number of protein coding genes and observed regulators.  Bacterial species 

are shown in green, while archaeal species are shown in blue.
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Additional files provided with this submission:

Additional file 1: Croft_Suppl_Tab1.xls : 19KB
http://genomebiology.com/imedia/6242531952294365/sup1.xls

Additional file 2: Croft_Suppl_Tab2.xls : 19KB
http://genomebiology.com/imedia/9810393722943652/sup2.xls



Croft_Suppl_Tab1

Name Description
ANTAR ANTAR domain
AraC_binding Arabinose operon regulatory protein
Arc Arc-like DNA binding domain
Arg_repressor Arginine repressor, DNA binding domain
ARID ARID/BRIGHT DNA binding domain
ASNC_trans_reg AsnC family
AT_hook AT hook motif
Baculo_IE-1 Baculovirus immediate-early protein (IE-0)
CarD_TRCF CarD-like/TRCF domain
Carla_C4 Carlavirus putative nucleic acid binding protein
CAT_RBD CAT RNA binding domain
crp Bacterial regulatory proteins, crp family
CSD 'Cold-shock' DNA-binding domain
CsrA Global regulator protein family
deoR Bacterial regulatory proteins, deoR family
DM-domain DM DNA binding domain
dsDNA_bind Double-stranded DNA-binding domain
dsrm Double-stranded RNA binding motif
Fe_dep_repress Iron dependent repressor, N-terminal DNA binding domain
filament_head Intermediate filament head (DNA binding) region
FINO Fertility inhibition protein (FINO)
FUR Ferric uptake regulator family
GATA GATA zinc finger
GerE Bacterial regulatory proteins, luxR family
gntR Bacterial regulatory proteins, gntR family
Herpes_ICP4_N Herpesvirus ICP4-like protein N-terminal region
Histone_HNS H-NS histone family
HLH Helix-loop-helix DNA-binding domain
HrcA HrcA protein C terminal domain
HSF_DNA-bind HSF-type DNA-binding
HTH_1 Bacterial regulatory helix-turn-helix protein, lysR family
HTH_10 HTH DNA binding domain
HTH_3 Helix-turn-helix
HTH_4 Ribbon-helix-helix protein, copG family
HTH_5 Bacterial regulatory protein, arsR family
HTH_6 Helix-turn-helix domain, rpiR family
HTH_8 Bacterial regulatory protein, Fis family
HTH_AraC Bacterial regulatory helix-turn-helix proteins, araC family
HTH_psq helix-turn-helix, Psq domain
IclR Bacterial transcriptional regulator
KilA-N KilA-N domain
lacI Bacterial regulatory proteins, lacI family
LexA_DNA_bind LexA DNA binding domain
LytTR LytTr DNA-binding domain



MarR MarR family
merR MerR family regulatory protein
Mga M protein trans-acting positive regulator (MGA)
Mu_DNA_bind Mu DNA-binding domain
myb_DNA-binding Myb-like DNA-binding domain
NusB NusB family
PadR Transcriptional regulator PadR-like family
PAS PAS domain
PC4 Transcriptional Coactivator p15 (PC4)
PRD PRD domain
PurA PurA ssDNA and RNA-binding protein
response_reg Response regulator receiver domain
rrm RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)
RseC_MucC Positive regulator of sigma(E), RseC/MucC
S1FA DNA binding protein S1FA
SAND SAND domain
SBP SBP domain
SeqA SeqA protein
SfsA Sugar fermentation stimulation protein
Sigma54_activat Sigma-54 interaction domain
sigma54_DBD Sigma-54, DNA binding domain
sigma70_r1_1 Sigma-70 factor, region 1.1
sigma70_r2 Sigma-70 region 2
SIS SIS domain
SpoVT_AbrB SpoVT / AbrB like domain
SRF-TF SRF-type transcription factor (DNA-binding and dimerisation domain)
Sua5_yciO_yrdC yrdC domain
Tat Transactivating regulatory protein (Tat)
T-box T-box
TCP TCP family transcription factor
TEA TEA/ATTS domain family
tetR Bacterial regulatory proteins, tetR family
trans_reg_C Transcriptional regulatory protein, C terminal
TrpBP Tryptophan RNA-binding attenuator protein
Vir_DNA_binding Viral DNA-binding protein, all alpha domain
zf-C2H2 Zinc finger, C2H2 type
zf-C2HC Zinc finger, C2HC type
zf-C4 Zinc finger, C4 type (two domains)
zf-Dof Dof domain, zinc finger
zf-NF-X1 NF-X1 type zinc finger
Zfx_Zfy_act Zfx / Zfy transcription activation region



Croft_Suppl_Tab2

organism genes regulatory genes
Mycoplasma genitalium 480 2
Buchnera aphidicola Sg 545 7
Buchnera sp. 574 9
Ureaplasma urealyticum 611 3
Wigglesworthia brevipalpis 611 12
Mycoplasma pneumoniae 688 2
Mycoplasma pulmonis 782 4
Tropheryma whipplei twist 808 6
Rickettsia prowazekii 834 12
Chlamydia trachomatis 894 10
Chlamydia muridarum 916 10
Treponema pallidum 1031 14
Mycoplasma penetrans 1037 16
Chlamydophila pneumoniae AR39 1110 10
Rickettsia conorii 1374 15
Thermoplasma acidophilum 1478 28
Helicobacter pylori J99 1491 9
Thermoplasma volcanium 1526 26
Aquifex aeolicus 1553 39
Mycobacterium leprae 1605 43
Campylobacter jejuni 1634 27
Borrelia burgdorferi 1637 12
Methanopyrus kandleri 1687 15
Streptococcus pyogenes 1696 78
Haemophilus influenzae 1709 63
Bifidobacterium longum 1729 78
Pyrococcus abyssi 1765 40
Methanococcus jannaschii 1770 28
Thermotoga maritima 1846 59
Methanobacterium thermoautotrophicum 1869 45
Streptococcus mutans 1960 111
Pasteurella multocida 2014 68
Neisseria meningitidis MC58 2025 40
Streptococcus pneumoniae R6 2043 80
Pyrococcus horikoshii 2064 33
Pyrococcus furiosus 2065 39
Fusobacterium nucleatum 2068 53
Streptococcus agalactiae 2603 2124 102
Chlorobium tepidum TLS 2252 34
Lactococcus lactis 2266 106



Clostridium tetani E88 2373 95
Archaeoglobus fulgidus 2407 85
Staphylococcus epidermidis ATCC 12228 2419 72
Thermosynechococcus elongatus 2475 60
Thermoanaerobacter tengcongensis 2588 115
Halobacterium sp. 2605 69
Pyrobaculum aerophilum 2605 33
Staphylococcus aureus MW2 2632 98
Aeropyrum pernix 2694 19
Clostridium perfringens 2723 121
Sulfolobus tokodaii 2826 68
Xylella fastidiosa 2831 71
Listeria monocytogenes 2846 177
Corynebacterium efficiens YS-314 2950 121
Sulfolobus solfataricus 2977 67
Lactobacillus plantarum 3009 183
Listeria innocua 3043 175
Deinococcus radiodurans 3102 99
Synechocystis PCC6803 3169 111
Brucella melitensis 3198 169
Brucella suis 1330 3264 164
Methanosarcina mazei 3371 76
Oceanobacillus iheyensis 3496 183
Caulobacter crescentus 3737 237
Vibrio cholerae 3828 223
Clostridium acetobutylicum 3848 221
Bacillus halodurans 4066 252
Yersinia pestis KIM 4090 196
Bacillus subtilis 4100 247
Shigella flexneri 2a 4180 216
Xanthomonas campestris 4181 225
Mycobacterium tuberculosis CDC1551 4187 160
Escherichia coli K12 4289 275
Xanthomonas citri 4312 233
Vibrio vulnificus CMCP6 4537 308
Methanosarcina acetivorans 4540 109
Salmonella typhimurium LT2 4553 304
Leptospira interrogans 4727 117
Salmonella typhi 4767 279
Shewanella oneidensis 4778 233
Ralstonia solanacearum 5116 345
Agrobacterium tumefaciens C58 5301 392
Pseudomonas putida KT2440 5350 353



Pseudomonas aeruginosa PA01 5565 484
Nostoc sp. 6129 267
Sinorhizobium meliloti 6205 449
Streptomyces avermitilis 7671 617
Streptomyces coelicolor 7897 704
Bradyrhizobium japonicum 8317 560
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