18 research outputs found

    Drying Without Senescence in Resurrection Plants

    Get PDF
    Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, Craterostigma wilmsii, Xerophyta humilis, Tortula ruralis and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Currently, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in younger leaf tissues of resurrection plants that enable suppression of drought-related senescence pathways. As very few studies have directly addressed this phenomenon, this revie

    The resurrection plant Sporobolus stapfianus: An unlikely model for engineering enhanced plant biomass?

    Full text link
    The resurrection grass Sporobolus stapfianus Gandoger can rapidly recover from extended periods of time in the desiccated state (water potential equilibrated to 2% relative humidity) (Gaff and Ellis, Bothalia 11:305–308 1974; Gaff and Loveys, Transactions of the Malaysian Society of Plant Physiology 3:286–287 1993). Physiological studies have been conducted in S. stapfianus to investigate the responses utilised by these desiccation-tolerant plants to cope with severe water-deficit. In a number of instances, more recent gene expression analyses in S. stapfianus have shed light on the molecular and cellular mechanisms mediating these responses. S. stapfianus is a versatile research tool for investigating desiccation-tolerance in vegetative grass tissue, with several useful characteristics for differentiating desiccation-tolerance adaptive genes from the many dehydration-responsive genes present in plants. A number of genes orthologous to those isolated from dehydrating S. stapfianus have been successfully used to enhance drought and salt tolerance in model plants as well as important crop species. In addition to the ability to desiccate and rehydrate successfully, the survival of resurrection plants in regions experiencing short sporadic rainfall events may depend substantially on the ability to tightly down-regulate cell division and cell wall loosening activities with decreasing water availability and then grow rapidly after rainfall while water is plentiful. Hence, an analysis of gene transcripts present in the desiccated tissue of resurrection plants may reveal important growth-related genes. Recent findings support the proposition that, as well as being a versatile model for devising strategies for protecting plants from water-loss, resurrection plants may be a very useful tool for pinpointing genes to target for enhancing growth rate and biomass production

    Sporobolus stapfianus, a model desiccation-tolerant grass

    Full text link
    Sporobolus stapfianus Gandoger, one of ~40 known ‘anabiotic’grass species (i.e. ‘able to regain vital activity from a state of latent life’), is the most versatile tool for research into desiccation tolerance in vegetative grass tissue. Current knowledge on this species is presented, including the features that suit it for investigations into the plant’s ability to survive dehydration of its leaf protoplasm. The main contributors to desiccation tolerance in S. stapfianus leaves appear to be: accumulation during dehydration of protectants of membranes and proteins; mechanisms limiting oxidative damage; a retention of protein synthetic activity in late stages of drying that is linked with changes in gene expression and in the proteomic array; and an ability to retain net synthesis of ATP during drying. S. stapfianus exemplifies an advanced stage of an evolutionary trend in desiccation tolerant plants towards increased importance of the dehydration phase (for induction of tolerance, for synthesis of protectants and for proteomic changes)

    Dark- and ABA-induced senescence in wild-type and SDG8i leaves.

    No full text
    <div><p>(A) Chlorophyll content and (B) photochemical efficiency in dark-treated detached leaves of WT and SDG8i plants.</p> <p>(C) Chlorophyll content and (D) photochemical efficiency in detached leaves of WT and SDG8i plants under continuous light in the absence or presence of 50 µM ABA.</p></div

    Root growth in SDG8i lines and wild-type Col-0 plants.

    No full text
    <div><p>Root biomass (FW) of pre-flowering plants growing in (A) long day at 21°C, measured 16 days after germination and (B) short day at 21°C, measured 50 days after germination. Values are the means ± SE of 4 replicates. </p> <p>Root development in 13-d-old <i>Arabidopsis</i> plants grown on vertical plates at 21°C under SD showing; (C) length of primary root and (D) length of fully elongated cortical cells and (E) lateral root primordium density and (F) lateral root initiation index. Values are the means ± SE of 4 replicates. </p></div
    corecore