26 research outputs found

    Generation of induced pluripotent stem cells (iPSCs) from patient with Cri du Chat Syndrome

    Get PDF
    Abstract The Cri du Chat Syndrome (CdCS) is a genetic disease resulting from variable size deletion occurring on the short arm of chromosome 5. The main clinical features are a high-pitched monochromatic cry, microcephaly, severe psychomotor and mental retardation with characteristics of autism spectrum disorders such as hand flapping, obsessive attachments to objects, twirling objects, repetitive movements, and rocking. We reprogrammed to pluripotency peripheral blood mononuclear cells derived from a patient carrying large deletion on the short arm of chromosome 5, using a commercially available non-integrating expression system. The iPSCs expressed pluripotency markers and differentiated in the three embryonic germ layers

    Generation of 3 clones of induced pluripotent stem cells (iPSCs) from a patient affected by Autosomal Recessive Osteopetrosis due to mutations in TCIRG1 gene.

    Get PDF
    Abstract Autosomal recessive osteopetrosis (ARO) is a rare inherited disorder leading to increased bone density with impairment in bone resorption. Among the genes responsible for ARO, the TCIRG1 gene, coding for the a3 subunit of the osteoclast proton pump, is mutated in more than 50% of the cases, increasing the importance of TCIRG1-iPSCs as disease model. We generated 3 iPSC clones derived from Peripheral Blood Mononuclear Cells (PBMCs) of a patient carrying the heterozygous mutations p.Y512X and c.2236+1G>A. A Sendai virus-based vector was used and the iPSCs were characterized for genetic identity to parental cells, genomic integrity, pluripotency, and differentiation ability

    Generation of induced pluripotent stem cell (iPSC) lines from a Joubert syndrome patient with compound heterozygous mutations in C5orf42 gene.

    Get PDF
    We have generated new disease-specific induced pluripotent stem cell (iPSC) lines from skin fibroblasts obtained from a female patient with Joubert syndrome (JS) caused by compound heterozygous mutations in C5orf42 gene. The generated iPSCs offer an unprecedented opportunity to obtain iPSC-derived neurons to investigate the pathogenesis of JS in vitro and to develop therapeutic strategies

    Establishment of three Joubert syndrome-derived induced pluripotent stem cell (iPSC) lines harbouring compound heterozygous mutations in CC2D2A gene.

    Get PDF
    We have developed Joubert syndrome (JS)-derived induced pluripotent stem cell (iPSC) lines from dermal fibroblasts biopsied from a female patient harbouring novel compound heterozygous mutations in CC2D2A gene. The newly established iPSC lines provide tremendous promises for development of JS-derived neuronal cell lines to uncover the molecular and cellular mechanisms underlying the pathogenesis of JS and to develop therapeutic interventions for treatment of JS

    Establishment of three iPSC lines from fibroblasts of a patient with Aicardi Goutières syndrome mutated in RNaseH2B.

    Get PDF
    Abstract We report the generation of three isogenic iPSC clones (UNIBSi007-A, UNIBSi007-B, and UNIBSi007-C) obtained from fibroblasts of a patient with Aicardi Goutieres Syndrome (AGS) carrying a homozygous mutation in RNaseH2B. Cells were transduced using a Sendai virus based system, delivering the human OCT4, SOX2, c-MYC and KLF4 transcription factors. The resulting transgene-free iPSC lines retained the disease-causing DNA mutation, showed normal karyotype, expressed pluripotent markers and could differentiate in vitro toward cells of the three embryonic germ layers

    Induced pluripotent stem cells as a model for therapy personalizationof pediatric patients: Disease modeling and drug adverse effects prevention

    No full text
    Understanding the biological and molecular processes underlying human pathologies is fundamental in order to develop innovative approaches to treat or prevent them. Among the technologies that could provide innovative disease models, induced pluripotent stem cells (iPSCs) is one of the most promising. Indeed, one application of this technology is patient-specific disease modeling. iPSCs obtained by reprogramming patients' cells collected from accessible tissues, have the unique capability to differentiate, under an adequate stimulus, into any human cell type. In particular, iPSCs technology can be applied to study drug adverse effects, that is a key part of the drug discovery process. Indeed, drug induced adverse effects are among the most common causes that lead to abandon the development of new candidate therapeutic molecules, increasing the cost of drug discovery. An innovative strategy that could be used in drug design to solve drug attrition rate, and to establish innovative pharmacological models, could be the application of iPSCs technology in the early stage of the drug discovery process to model druginduced adverse events. In this review, recently developed disease models based on iPSCs will be discussed, with a particular focus on available models of drugs' adverse effect, in particular hepatic/pancreatic toxicity

    A novel mitochondrial tRNAAla gene variant causes chronic progressive external ophthalmoplegia in a patient with Huntington disease

    No full text
    Chronic progressive external ophthalmoplegia is a mitochondrial disorder usually caused by single or multiple mitochondrial DNA (mtDNA) deletions and, more rarely, by maternally inherited mtDNA point mutations, most frequently in tRNA genes (MTT). We report on a patient presenting with a progressive eyelid ptosis with bilateral ophthalmoparesis, dysphagia, dysphonia and mild proximal limb weakness associate with a mild movement disorder characterized by abnormal involuntary movements involving head and limbs, imbalance and gait instability. Muscle biopsy demonstrated the presence of ragged red fibers and several cytochrome-C-oxidase negative fibers. Molecular analysis showed the novel m.5613T > C heteroplasmic mutation in the mitochondrial tRNAAla gene (MTTA) which disrupts a conserved site and fulfills the accepted criteria of pathogenicity. Moreover, a 38 CAG trinucleotide repeat expansion was found on the huntingtin gene, thus configuring a singular CPEO/“reduced penetrance” Huntington disease “double trouble”. With this novel MTTA point mutation, we extend the spectrum of provisional pathogenic changes in this gene, which is a very rare site of pathogenic mutation, and confirm that clinical expression of these mutations is hardly ever heterogeneous, including myopathy and CPEO. Mitochondrial involvement is an emerging key determinant in the pathogenesis of Huntington disease and it is well known that mutant huntingtin influences the mitochondrial respiratory complexes II and III. A synergist effect of the HTT and MTTA mutations on respiratory chain function may be hypothesized in our patient and should be regarded as a spur for further studies on the mtDNA/HTT reciprocal interactions

    First report of successful stem cell transplantation in a child with CD40 deficiency

    No full text
    corecore