4 research outputs found

    Learning from Conect4children: A Collaborative Approach towards Standardization of Disease-Specific Paediatric Research Data

    Get PDF
    The conect4children (c4c) initiative was established to facilitate the development of new drugs and other therapies for paediatric patients. It is widely recognized that there are not enough medicines tested in all relevant ages of the paediatric population. To overcome this, it is imperative that clinical data from different sources are interoperable and can be pooled for larger post-hoc studies. c4c has collaborated with the Clinical Data Interchange Standards Consortium (CDISC) to develop the cross-cutting data resources that build on existing CDISC standards, in an effort to standardize paediatric data. The natural next step was an extension to disease-specific data items. c4c brought together several existing initiatives and resources relevant to disease-specific data and to analyse their use for standardizing disease-specific data in clinical trials. Several case studies that combined disease-specific data from multiple trials have demonstrated the need for disease-specific data standardization. We identified three relevant initiatives. These include European Reference Networks, European Joint Programme on Rare Diseases, and Pistoia Alliance. Other resources reviewed were: National Cancer Institute Enterprise Vocabulary Services, CDISC standards, pharmaceutical company-specific data dictionaries, Human Phenotype Ontology, Phenopackets, Unified Registry for Inherited Metabolic Disorders, Orphacodes, Rare Disease Cures Accelerator-Data and Analytics Platform (RDCA-DAP) and Observational Medical Outcomes Partnership. The collaborative partners associated with these resources were also reviewed briefly. A plan of action focussed on collaboration was generated for standardizing disease-specific paediatric clinical trial data. A paediatric data standards multistakeholder and multi-project user group was established to guide the remaining actions– FAIRification of metadata, a Phenopackets pilot with RDCA-DAP, applying Orphacodes to case report forms of clinical trials, introducing CDISC standards into European Reference Networks, testing of the CDISC Pediatric User Guide using data from the mentioned resources and organization of further workshops and educational materials

    DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease

    Get PDF
    The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease.</p

    Establishment and maintenance of the DNA methylation pattern in the human alpha-globin cluster

    No full text
    DNA methylation is an epigenetic modification that plays an important role in development and differentiation. The patterns of DNA methylation are largely established in early embryogenesis and maintained during development. Abnormal DNA methylation patterns have been associated with many human diseases, including cancer. Despite its importance, little is currently known about the mechanisms that determine DNA methylation patterns throughout the genome. To shed light on the molecular mechanisms that regulate DNA methylation, this study investigates whether DNA methylation patterns are established and maintained normally when human DNA is placed into a heterologous murine environment as opposed to its natural, endogenous chromosomal environment. Here, a previously generated transgenic mouse model, containing 117 kb of human DNA bearing the human &alpha;-globin cluster and all of its known regulatory elements, was analysed. The pattern of DNA methylation of the endogenous human &alpha;-globin cluster was compared with that of the transgenic cluster in the background of mouse embryonic stem cells (ESCs) and tissues. It was found that, although the normal human DNA methylation pattern was largely established and maintained in a mouse background, the region immediately around the human &alpha;-globin genes themselves is generally less methylated in mouse compared to human ESCs. It was found that regions adjacent and up to 2kb from the CpG islands (CGIs), so-called CGI shores, were unusually hypomethylated: this seems to be the result of an extension of CGIs in humanised mouse (hm) ESCs compared to human (h) ESCs. Furthermore, this hypomethylation appeared to increase during development in both erythroid and non-erythoid cells. To identify any cis-regulatory sequences responsible for the hypomethylated state of human CGI shores in the mouse, 2-4 kb human test sequences containing the CGI associated with the human &alpha;-globin 2 (α2) gene and its adjacent hypomethylated shore were re-integrated into the mouse &alpha;-globin locus via recombination-mediated cassette exchange (RMCE). Human CGI shores became hypomethylated in the context of the re-integrated test sequences, indicating that the appearance of hypomethylation is determined by the underlying human DNA sequence in the test fragments. In summary, the data presented here reveal that human CGIs become extended when placed in a mouse background leading to hypomethylation of human CGI shores in the mouse compared to the pattern of methylation at the normal endogenous human locus. These findings suggest that species-specific factors determine DNA methylation near CGIs. The transgenic mouse model provides an excellent system to dissect out species-specific regulation of CGI shore methylation. Furthermore, this study lays the foundation for future experiments addressing the role of DNA methylation in regulating human gene expression in the murine context, and examining the validity of transgenic mouse models for the study of human gene regulation.This thesis is currently not available on ORA
    corecore