18 research outputs found
Random survival forests for predicting the bed occupancy in the intensive care unit
Predicting the bed occupancy of an intensive care unit (ICU) is a daunting task. The uncertainty associated with the prognosis of critically ill patients and the random arrival of new patients can lead to capacity problems and the need for reactive measures. In this paper, we work towards a predictive model based on Random Survival Forests which can assist physicians in estimating the bed occupancy. As input data, we make use of the Sequential Organ Failure Assessment (SOFA) score collected and calculated from 4098 patients at two ICU units of Ghent University Hospital over a time period of four years. We compare the performance of our system with a baseline performance and a standard Random Forest regression approach. Our results indicate that Random Survival Forests can effectively be used to assist in the occupancy prediction problem. Furthermore, we show that a group based approach, such as Random Survival Forests, performs better compared to a setting in which the length of stay of a patient is individually assessed
Attributable Mortality of Ventilator-associated Pneumonia. Replicating Findings, Revisiting Methods.
Rationale: Estimating the impact of ventilator-associated pneumonia (VAP) from routinely collected intensive care unit (ICU) data is methodologically challenging.Objectives: We aim to replicate earlier findings of limited VAP-attributable ICU mortality in an independent cohort. By refining statistical analyses, we gradually tackle different sources of bias.Methods: Records of 2,720 adult patients admitted to Ghent University Hospital ICUs (2013-2017) and receiving mechanical ventilation within 48 hours after admission were extracted from linked Intensive Care Information System and Computer-based Surveillance and Alerting of Nosocomial Infections, Antimicrobial Resistance, and Antibiotic Consumption in the ICU databases. The VAP-attributable fraction of ICU mortality was estimated using a competing risk analysis that is restricted to VAP-free patients (approach 1), accounts for VAP onset by treating it as either a competing (approach 2) or censoring event (approach 3), or additionally adjusts for time-dependent confounding via inverse probability weighting (approach 4).Results: A total of 210 patients (7.7%) acquired VAP. Based on benchmark approach 4, we estimated that (compared with current preventive measures) hypothetical eradication of VAP would lead to a relative ICU mortality reduction of 1.7% (95% confidence interval, -1.3 to 4.6) by Day 10 and of 3.6% (95% confidence interval, 0.7 to 6.5) by Day 60. Approaches 1-3 produced estimates ranging from -0.7% to 2.5% by Day 10 and from 5.2% to 5.5% by Day 60.Conclusions: In line with previous studies using appropriate methodology, we found limited VAP-attributable ICU mortality given current state-of-the-art VAP prevention measures. Our study illustrates that inappropriate accounting of the time dependency of exposure and confounding of its effects may misleadingly suggest protective effects of early-onset VAP and systematically overestimate attributable mortality
Outcome in patients perceived as receiving excessive care across different ethical climates : a prospective study in 68 intensive care units in Europe and the USA
Whether the quality of the ethical climate in the intensive care unit (ICU) improves the identification of patients receiving excessive care and affects patient outcomes is unknown.
In this prospective observational study, perceptions of excessive care (PECs) by clinicians working in 68 ICUs in Europe and the USA were collected daily during a 28-day period. The quality of the ethical climate in the ICUs was assessed via a validated questionnaire. We compared the combined endpoint (death, not at home or poor quality of life at 1 year) of patients with PECs and the time from PECs until written treatment-limitation decisions (TLDs) and death across the four climates defined via cluster analysis.
Of the 4747 eligible clinicians, 2992 (63%) evaluated the ethical climate in their ICU. Of the 321 and 623 patients not admitted for monitoring only in ICUs with a good (n = 12, 18%) and poor (n = 24, 35%) climate, 36 (11%) and 74 (12%), respectively were identified with PECs by at least two clinicians. Of the 35 and 71 identified patients with an available combined endpoint, 100% (95% CI 90.0-1.00) and 85.9% (75.4-92.0) (P = 0.02) attained that endpoint. The risk of death (HR 1.88, 95% CI 1.20-2.92) or receiving a written TLD (HR 2.32, CI 1.11-4.85) in patients with PECs by at least two clinicians was higher in ICUs with a good climate than in those with a poor one. The differences between ICUs with an average climate, with (n = 12, 18%) or without (n = 20, 29%) nursing involvement at the end of life, and ICUs with a poor climate were less obvious but still in favour of the former.
Enhancing the quality of the ethical climate in the ICU may improve both the identification of patients receiving excessive care and the decision-making process at the end of life
Perception of inappropriate cardiopulmonary resuscitation by clinicians working in emergency departments and ambulance services : The REAPPROPRIATE international, multi-centre, cross sectional survey
Introduction: Cardiopulmonary resuscitation (CPR) is often started irrespective of comorbidity or cause of arrest. We aimed to determine the prevalence of perception of inappropriate CPR of the last cardiac arrest encountered by clinicians working in emergency departments and out-of-hospital, factors associated with perception, and its relation to patient outcome. Methods: A cross-sectional survey was conducted in 288 centres in 24 countries. Factors associated with perception of CPR and outcome were analyzed by Cochran-Mantel-Haenszel tests and conditional logistic models. Results: Of the 4018 participating clinicians, 3150 (78.4%) perceived their last CPR attempt as appropriate, 548 (13.6%) were uncertain about its appropriateness and 320 (8.0%) perceived inappropriateness; survival to hospital discharge was 370/2412 (15.3%), 8/481 (1.7%) and 8/294 (2.7%) respectively. After adjusting for country, team and clinician's characteristics, the prevalence of perception of inappropriate CPR was higher for a non-shockable initial rhythm (OR 3.76 [2.13-6.64]; P 79 years) and in case of a "poor" first physical impression of the patient (3.45 [2.36-5.05]; P 79 years) and a "poor" first physical impression (0.26 [0.19-0.35]; P <0.0001). Conclusions: The perception of inappropriate CPR increased when objective indicators of poor prognosis were present and was associated with a low survival to hospital discharge. Factoring clinical judgment into the decision to (not) attempt CPR may reduce harm inflicted by excessive resuscitation attempts.Peer reviewe
C-reactive protein interacts with amphotericin B liposomes and its potential clinical consequences
Objectives
Amphotericin B (AmB) is the gold standard for treating invasive fungal infections. New liposomal-containing AmB formulations have been developed to improve efficacy and tolerability. Serum/plasma C-reactive protein (CRP) values are widely used for monitoring infections and inflammation. CRP shows a high affinity to phosphocholine and it aggregates structures bearing this ligand, e.g. phosphocholine-containing liposomes. Therefore, we studied the interaction between CRP and phosphocholine-containing liposomal AmB preparations in vivo and in vitro.
Methods
CRP was prepared by affinity chromatography. Liposomal AmB (L-AmB, AmBisome®) was spiked (final concentrations of L-AmB: 150 mg/L) to CRP-containing serum (final CRP concentration: 300 mg/L). Following the addition of L-AmB, complex formation was monitored turbidimetrically. The size of CRP-L-AmB complexes was assessed using gel filtration. CRP was monitored in patients receiving either L-Amb or AmB lipid complex (ABLC).
Results
Following addition of L-AmB to CRP-containing plasma, turbidimetry showed an increase in absorbance. These results were confirmed by gel permeation chromatography. Similarly, in vivo effects were observed following intravenous administration of AmBisome®: a decline in CRP values was observed. In patients receiving L-Amb, decline of CRP concentration was faster than in patients receiving ABLC.
Conclusions
In vitro experiments are suggestive of a complexation between CRP and liposomes in plasma. Interpretation of CRP values following administration of AmBisome® might be impaired due to this complexation. In vivo formation of complexes between liposomes and CRP might contribute, or even lead, to intravascular microembolisation. Similar effects have been described following the administration of Intralipid® and other phosphocholine-containing liposomes.
Keywords: amphotericin B; C-reactive protein; complexes; gel permeation chromatography; phosphocholin
Antimicrobial prescription in severe COVID-19 and CAP : a matched case-control study
Background In severe coronavirus diseases 2019 (COVID-19), a high and potentially excessive use of antimicrobials for suspected bacterial co-infection and intensive care unit (ICU)-acquired infections has been repeatedly reported. Objectives To compare an ICU cohort of community-acquired pneumonia (CAP) with a cohort of severe COVID-19 pertaining to co-infections, ICU-acquired infections and associated antimicrobial consumption. Methods We retrospectively compared a cohort of CAP patients with a cohort of COVID-19 patients matched according to organ failure, ICU length of stay (LOS) and ventilation days. Patient data such as demographics, infection focus, probability and severity, ICU severity scores and ICU and in-hospital mortality, days of antimicrobial therapy (DOT) and number of antimicrobial prescriptions, using an incremental scale, were registered and analysed. The total number of cultures (sputum, urinary, blood cultures) was collected and corrected for ICU LOS. Findings CAP patients (n = 148) were matched to COVID-19 patients (n = 74). Significantly less sputum cultures (68.2% versus 18.9%, P < 0.05) and bronchoalveolar lavages (BAL) (73.7% versus 36.5%, P < 0.05) were performed in COVID-19 patients. Six (8.1%) COVID-19 patients were diagnosed with a co-infection. Respectively, 58 of 148 (39.2%) CAP and 38 of 74 (51.4%) COVID-19 patients (P = 0.09) developed ICU-acquired infections. Antimicrobial distribution, both in the number of prescriptions and DOT, was similar in both cohorts. Conclusions We found a low rate of microbiologically confirmed bacterial co-infection and a high rate of ICU-acquired infections in COVID-19 patients. Infection probabilities, antimicrobial prescriptions and DOT were comparable with a matched CAP cohort
COSARA: integrated service platform for infection surveillance and antibiotic management in the ICU
The Intensive Care Unit is a data intensive environment where large volumes of patient monitoring and observational data are daily generated. Today, there is a lack of an integrated clinical platform for automated decision support and analysis. Despite the potential of electronic records for infection surveillance and antibiotic management, different parts of the clinical data are stored across databases in their own formats with specific parameters, making access to all data a complex and time-consuming challenge. Moreover, the motivation behind physicians' therapy decisions is currently not captured in existing information systems. The COSARA research project offers automated data integration and services for infection control and antibiotic management for Ghent University Hospital. The platform not only gathers and integrates all relevant data, it also presents the information visually at the point of care. In this paper, we describe the design and value of COSARA for clinical treatment and infectious diseases monitoring. On the one hand, this platform can facilitate daily bedside follow-up of infections, antibiotic therapies and clinical decisions for the individual patient, while on the other hand, the platform serves as management view for infection surveillance and care quality improvement within the complete ICU ward. It is shown that COSARA is valuable for registration, real-time presentation and management of infection-related and antibiotics data