327 research outputs found

    Localization of N=4 Superconformal Field Theory on S^1 x S^3 and Index

    Full text link
    We provide the geometrical meaning of the N=4{\cal N}=4 superconformal index. With this interpretation, the N=4{\cal N}=4 superconformal index can be realized as the partition function on a Scherk-Schwarz deformed background. We apply the localization method in TQFT to compute the deformed partition function since the deformed action can be written as a δϵ\delta_\epsilon-exact form. The critical points of the deformed action turn out to be the space of flat connections which are, in fact, zero modes of the gauge field. The one-loop evaluation over the space of flat connections reduces to the matrix integral by which the N=4{\cal N}=4 superconformal index is expressed.Comment: 42+1 pages, 2 figures, JHEP style: v1.2.3 minor corrections, v4 major revision, conclusions essentially unchanged, v5 published versio

    A note on the integral equation for the Wilson loop in N = 2 D=4 superconformal Yang-Mills theory

    Full text link
    We propose an alternative method to study the saddle point equation in the strong coupling limit for the Wilson loop in N=2\mathcal{N}=2 D=4 super Yang-Mills with an SU(N) gauge group and 2N hypermultiplets. This method is based on an approximation of the integral equation kernel which allows to solve the simplified problem exactly. To determine the accuracy of this approximation, we compare our results to those obtained recently by Passerini and Zarembo. Although less precise, this simpler approach provides an explicit expression for the density of eigenvalues that is used to derive the planar free energy.Comment: 12 pages, v2: section 2.5 (Free Energy) amended and reference added, to appear in J. Phys.

    Hilbert Series for Moduli Spaces of Two Instantons

    Full text link
    The Hilbert Series (HS) of the moduli space of two G instantons on C^2, where G is a simple gauge group, is studied in detail. For a given G, the moduli space is a singular hyperKahler cone with a symmetry group U(2) \times G, where U(2) is the natural symmetry group of C^2. Holomorphic functions on the moduli space transform in irreducible representations of the symmetry group and hence the Hilbert series admits a character expansion. For cases that G is a classical group (of type A, B, C, or D), there is an ADHM construction which allows us to compute the HS explicitly using a contour integral. For cases that G is of E-type, recent index results allow for an explicit computation of the HS. The character expansion can be expressed as an infinite sum which lives on a Cartesian lattice that is generated by a small number of representations. This structure persists for all G and allows for an explicit expressions of the HS to all simple groups. For cases that G is of type G_2 or F_4, discrete symmetries are enough to evaluate the HS exactly, even though neither ADHM construction nor index is known for these cases.Comment: 53 pages, 9 tables, 24 figure

    Rigid Supersymmetric Theories in Curved Superspace

    Full text link
    We present a uniform treatment of rigid supersymmetric field theories in a curved spacetime M\mathcal{M}, focusing on four-dimensional theories with four supercharges. Our discussion is significantly simpler than earlier treatments, because we use classical background values of the auxiliary fields in the supergravity multiplet. We demonstrate our procedure using several examples. For M=AdS4\mathcal{M}=AdS_4 we reproduce the known results in the literature. A supersymmetric Lagrangian for M=S4\mathcal{M}=\mathbb{S}^4 exists, but unless the field theory is conformal, it is not reflection positive. We derive the Lagrangian for M=S3×R\mathcal{M}=\mathbb{S}^3\times \mathbb{R} and note that the time direction R\mathbb{R} can be rotated to Euclidean signature and be compactified to §1\S^1 only when the theory has a continuous R-symmetry. The partition function on M=S3ק1\mathcal{M}=\mathbb{S}^3\times \S^1 is independent of the parameters of the flat space theory and depends holomorphically on some complex background gauge fields. We also consider R-invariant N=2\mathcal{N}=2 theories on S3\mathbb{S}^3 and clarify a few points about them.Comment: 26 pages, uses harvmac; v2 with added reference

    Counting Exceptional Instantons

    Get PDF
    We show how to obtain the instanton partition function of N=2 SYM with exceptional gauge group EFG using blow-up recursion relations derived by Nakajima and Yoshioka. We compute the two instanton contribution and match it with the recent proposal for the superconformal index of rank 2 SCFTs with E6, E7 global symmetry.Comment: 16 pages, references adde

    Superconformal index, BPS monodromy and chiral algebras

    Get PDF
    We show that specializations of the 4d N = 2 superconformal index labeled by an integer N is given by Tr M-N where M is the Kontsevich-Soibelman monodromy operator for BPS states on the Coulomb branch. We provide evidence that the states enumerated by these limits of the index lead to a family of 2d chiral algebras A(N). This generalizes the recent results for the N = -1 case which corresponds to the Schur limit of the superconformal index. We show that this specialization of the index leads to the same integrand as that of the elliptic genus of compactification of the superconformal theory on S-2 x T-2 where we turn on 1/2 N units of U(1)(r) flux on S-2

    Four-loop anomalous dimensions in Leigh-Strassler deformations

    Full text link
    We determine the scalar part of the four-loop chiral dilatation operator for Leigh-Strassler deformations of N=4 super Yang-Mills. This is sufficient to find the four-loop anomalous dimensions for operators in closed scalar subsectors. This includes the SU(2) subsector of the (complex) beta-deformation, where we explicitly compute the anomalous dimension for operators with a single impurity. It also includes the "3-string null" operators of the cubic Leigh-Strassler deformation. Our four-loop results show that the rational part of the anomalous dimension is consistent with a conjecture made in arXiv:1108.1583 based on the three-loop result of arXiv:1008.3351 and the N=4 magnon dispersion relation. Here we find additional zeta(3) terms.Comment: Latex, feynmp, 21 page

    Partition Functions for Maxwell Theory on the Five-torus and for the Fivebrane on S1XT5

    Get PDF
    We compute the partition function of five-dimensional abelian gauge theory on a five-torus T5 with a general flat metric using the Dirac method of quantizing with constraints. We compare this with the partition function of a single fivebrane compactified on S1 times T5, which is obtained from the six-torus calculation of Dolan and Nappi. The radius R1 of the circle S1 is set to the dimensionful gauge coupling constant g^2= 4\pi^2 R1. We find the two partition functions are equal only in the limit where R1 is small relative to T5, a limit which removes the Kaluza-Klein modes from the 6d sum. This suggests the 6d N=(2,0) tensor theory on a circle is an ultraviolet completion of the 5d gauge theory, rather than an exact quantum equivalence.Comment: v4, 37 pages, published versio

    SL(2,R) Chern-Simons, Liouville, and Gauge Theory on Duality Walls

    Full text link
    We propose an equivalence of the partition functions of two different 3d gauge theories. On one side of the correspondence we consider the partition function of 3d SL(2,R) Chern-Simons theory on a 3-manifold, obtained as a punctured Riemann surface times an interval. On the other side we have a partition function of a 3d N=2 superconformal field theory on S^3, which is realized as a duality domain wall in a 4d gauge theory on S^4. We sketch the proof of this conjecture using connections with quantum Liouville theory and quantum Teichmuller theory, and study in detail the example of the once-punctured torus. Motivated by these results we advocate a direct Chern-Simons interpretation of the ingredients of (a generalization of) the Alday-Gaiotto-Tachikawa relation. We also comment on M5-brane realizations as well as on possible generalizations of our proposals.Comment: 53+1 pages, 14 figures; v2: typos corrected, references adde

    Twisted characters and holomorphic symmetries

    Get PDF
    We consider holomorphic twists of arbitrary supersymmetric theories in four dimensions. Working in the BV formalism, we rederive classical results characterizing the holomorphic twist of chiral and vector supermultiplets, computing the twist explicitly as a family over the space of nilpotent supercharges in minimal supersymmetry. The BV formalism allows one to work with or without auxiliary fields, according to preference; for chiral superfields, we show that the result of the twist is an identical BV theory, the holomorphic βγ\beta\gamma system with superpotential, independent of whether or not auxiliary fields are included. We compute the character of local operators in this holomorphic theory, demonstrating agreement of the free local operators with the usual index of free fields. The local operators with superpotential are computed via a spectral sequence, and are shown to agree with functions on a formal mapping space into the derived critical locus of the superpotential. We consider the holomorphic theory on various geometries, including Hopf manifolds and products of arbitrary pairs of Riemann surfaces, and offer some general remarks on dimensional reductions of holomorphic theories along the (n1)(n-1)-sphere to topological quantum mechanics. We also study an infinite-dimensional enhancement of the flavor symmetry in this example, to a recently-studied central extension of the derived holomorphic functions with values in the original Lie algebra that generalizes the familiar Kac--Moody enhancement in two-dimensional chiral theories
    corecore