487 research outputs found

    Isolation of two Kocuria species capable of growing on various polycyclic aromatic hydrocarbons

    Get PDF
    Different samples collected from crude oil contaminated beach were enriched for isolation of bacterial strains capable of growing on naphthalene, phenanthrene and fluoranthene. Respiratory reduction ofWST-1{4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate} to a colored formazan showed that one isolated strain CMG2028, identified as Kocuria flava by 16s rRNA, grew onnaphthalene and phenanthrene while CMG2042, identified as Kocuria rosea grew on all three polycyclic aromatic hydrocarbons (PAHs). In naphthalene degradation test, 64 and 47% residual naphthalene was extracted after ten days of incubation from culture medium of K. rosea CMG2042 and K. flava CMG2028, respectively, when provided with 0.5 mg ml-1 concentration as sole carbon source. Due to addition of 0.5 mg ml-1 yeast extract as additional carbon source, residual naphthalene extracted was 41 and 55% from K. rosea CMG2042 and K. flava CMG2028, respectively. Both strains exhibited growth on 0.01 mg ml-1 phenanthrene and fluoranthene in yeast extract added or omitted medium but only K. rosea CMG2042degraded 9% phenanthrene as a sole carbon source. Both strains had growth on minimal agar plates coated with Iranian light crude oil as sole carbon source and on agar medium added with yeast extract

    Influence of metals and metalloids on the composition and fluorescence quenching of the extracellular polymeric substances produced by the polymorphic fungus <i>Aureobasidium pullulans</i>

    Get PDF
    Aureobasidium pullulansis a ubiquitous and widely distributed fungus in the environment, and exhibits substantial tolerance against toxic metals. However, the interactions between metals and metalloids with the copious extracellular polymeric substances (EPS) produced byA. pullulansand possible relationships to tolerance are not well understood. In this study, it was found that mercury (Hg) and selenium (Se), as selenite, not only significantly inhibited growth ofA. pullulansbut also affected the composition of produced EPS. Lead (Pb) showed little influence on EPS yield or composition. The interactions of EPS fromA. pullulanswith the tested metals and metalloids depended on the specific element and their concentration. Fluorescence intensity measurements of the EPS showed that the presence of metal(loid)s stimulated the production of extracellular tryptophan-like and aromatic protein-like substances. Examination of fluorescence quenching and calculation of binding constants revealed that the fluorescence quenching process for Hg; arsenic (As), as arsenite; and Pb to EPS were mainly governed by static quenching which resulted in the formation of a stable non-fluorescent complexes between the EPS and metal(loid)s. Se showed no significant interaction with the EPS according to fluorescence quenching. These results provide further understanding of the interactions between metals and metalloids and EPS produced by fungi and their contribution to metal(loid) tolerance

    Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus

    Get PDF
    The saprotrophic fungus Penicillium griseofulvum was chosen as model organism to study responses to a mixture of hexachlorocyclohexane (HCH) isomers (α-HCH, β-HCH, γ-HCH, δ-HCH) and of potentially toxic metals (vanadium, lead) in solid and liquid media. The P. griseofulvum FBL 500 strain was isolated from polluted soil containing high concentrations of HCH isomers and potentially toxic elements (Pb, V). Experiments were performed in order to analyse the tolerance/resistance of this fungus to xenobiotics, and to shed further light on fungal potential in inorganic and organic biotransformations. The aim was to examine the ecological and bioremedial potential of this fungus verifying the presence of mechanisms that allow it to transform HCH isomers and metals under different, extreme, test conditions. To our knowledge, this work is the first to provide evidence on the biotransformation of HCH mixtures, in combination with toxic metals, by a saprotrophic non-white-rot fungus and on the metabolic synergies involved

    Biotransformation of lanthanum by Aspergillus niger

    Get PDF
    Lanthanum is an important rare earth element and has many applications in modern electronics and catalyst manufacturing. However, there exist several obstacles in the recovery and cycling of this element due to a low average grade in exploitable deposits and low recovery rates by energy-intensive extraction procedures. In this work, a novel method to transform and recover La has been proposed using the geoactive properties of Aspergillus niger. La-containing crystals were formed and collected after A. niger was grown on Czapek-Dox agar medium amended with LaCl 3. Energy-dispersive X-ray analysis (EDXA) showed the crystals contained C, O, and La; scanning electron microscopy revealed that the crystals were of a tabular structure with terraced surfaces. X-ray diffraction identified the mineral phase of the sample as La 2(C 2O 4) 3·10H 2O. Thermogravimetric analysis transformed the oxalate crystals into La 2O 3 with the kinetics of thermal decomposition corresponding well with theoretical calculations. Geochemical modelling further confirmed that the crystals were lanthanum decahydrate and identified optimal conditions for their precipitation. To quantify crystal production, biomass-free fungal culture supernatants were used to precipitate La. The results showed that the precipitated lanthanum decahydrate achieved optimal yields when the concentration of La was above 15 mM and that 100% La was removed from the system at 5 mM La. Our findings provide a new aspect in the biotransformation and biorecovery of rare earth elements from solution using biomass-free fungal culture systems. </p

    Cleanup of industrial effluents containing heavy metals : a new opportunity of valorising the biomass produced by brewing industry

    Get PDF
    Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed

    Oxalic acid, versatile peroxidase secretion and chelating ability of Bjerkandera fumosa in rich and limited culture conditions

    Get PDF
    Efficient ligninolytic systems of wood-degrading fungi include not only oxidizing enzymes, but also low-molecular-weight effectors. The ability of Bjerkandera fumosa to secrete oxalic acid and versatile peroxidase (VP) in nitrogen-rich and nitrogen-limited media was studied. Higher activity of VP was determined in the nitrogen-limited media but greater concentration of oxalic acid was observed in the cultures of B. fumosa without nitrogen limitation. Ferric ions chelating ability of Bjerkandera fumosa studied in ferric ions limited media was correlated with the increased level of oxalic acid. The presence of hydroxamate-type siderophores in B. fumosa media were also detected. Oxalate decarboxylase was found to be responsible for regulation of oxalic acid concentration in the tested B. fumosa cultures
    corecore