3 research outputs found
Independent association of PD-L1 expression with noninactivated VHL clear cell renal cell carcinoma-A finding with therapeutic potential
International audienceClear cell renal cell carcinoma (ccRCC) is an aggressive tumor that is characterized in most cases by inactivation of the tumor suppressor gene VHL. The VHL/HIF/VEGF pathway thus plays a major role in angiogenesis and is currently targeted by anti-angiogenic therapy. The emergence of resistance is leading to the use of targeted immunotherapy against immune checkpoint PD1/PDL1 that restores antitumor immune response. The correlation between VHL status and PD-L1 expression has been little investigated. In this study, we retrospectively reviewed 98 consecutive cases of ccRCC and correlated PD-L1 expression by immunohistochemistry (IHC) with clinical data (up to 10-year follow-up), pathological criteria, VEGF, PAR-3, CAIX and PD-1 expressions by IHC and complete VHL status (deletion, mutation and promoter hypermethylation). PD-L1 expression was observed in 69 ccRCC (70.4%) and the corresponding patients had a worse prognosis, with a median specific survival of 52 months (p = 0.03). PD-L1 expression was significantly associated with poor prognostic factors such as a higher ISUP nucleolar grade (p = 0.01), metastases at diagnosis (p = 0.01), a sarcomatoid component (p = 0.04), overexpression of VEGF (p = 0.006), and cytoplasmic PAR-3 expression (p = 0.01). PD-L1 expression was also associated with dense PD-1 expression (p = 0.007) and with ccRCC with 0 or 1 alteration(s) (non-inactivated VHL tumors; p = 0.007) that remained significant after multivariate analysis (p = 0.004 and p = 0.024, respectively). Interestingly, all wild-type VHL tumors (no VHL gene alteration, 11.2%) expressed PD-L1. In this study, we found PD-L1 expression to be associated with noninactivated VHL tumors and in particular wild-type VHL ccRCC, which may benefit from therapies inhibiting PD-L1/PD-1
Identification of a new aggressive axis driven by ciliogenesis and absence of VDAC1-ΔC in clear cell Renal Cell Carcinoma patients
International audienceRationale: Renal cell carcinoma (RCC) accounts for about 2% of all adult cancers, and clear cell RCC (ccRCC) is the most common RCC histologic subtype. A hallmark of ccRCC is the loss of the primary cilium, a cellular antenna that senses a wide variety of signals. Loss of this key organelle in ccRCC is associated with the loss of the von Hippel-Lindau protein (VHL). However, not all mechanisms of ciliopathy have been clearly elucidated. Methods: By using RCC4 renal cancer cells and patient samples, we examined the regulation of ciliogenesis via the presence or absence of the hypoxic form of the voltage-dependent anion channel (VDAC1-ΔC) and its impact on tumor aggressiveness. Three independent cohorts were analyzed. Cohort A was from PREDIR and included 12 patients with hereditary pVHL mutations and 22 sporadic patients presenting tumors with wild-type pVHL or mutated pVHL; Cohort B included tissue samples from 43 patients with non-metastatic ccRCC who had undergone surgery; and Cohort C was composed of 375 non-metastatic ccRCC tumor samples from The Cancer Genome Atlas (TCGA) and was used for validation. The presence of VDAC1-ΔC and legumain was determined by immunoblot. Transcriptional regulation of IFT20/GLI1 expression was evaluated by qPCR. Ciliogenesis was detected using both mouse anti-acetylated α-tubulin and rabbit polyclonal ARL13B antibodies for immunofluorescence. Results: Our study defines, for the first time, a group of ccRCC patients in which the hypoxia-cleaved form of VDAC1 (VDAC1-ΔC) induces resorption of the primary cilium in a Hypoxia-Inducible Factor-1 (HIF-1)-dependent manner. An additional novel group, in which the primary cilium is re-expressed or maintained, lacked VDAC1-ΔC yet maintained glycolysis, a signature of epithelial-mesenchymal transition (EMT) and more aggressive tumor progression, but was independent to VHL. Moreover, these patients were less sensitive to sunitinib, the first-line treatment for ccRCC, but were potentially suitable for immunotherapy, as indicated by the immunophenoscore and the presence of PDL1 expression. Conclusion: This study provides a new way to classify ccRCC patients and proposes potential therapeutic targets linked to metabolism and immunotherapy